299 bài trắc nghiệm Tổ hợp xác suất từ đề thi đại...
- Câu 1 : Một chiếc vòng đeo tay gồm 20 hạt giống nhau. Hỏi có bao nhiêu cách cắt chiếc vòng đó thành 2 phần mà số hạt ở mỗi phần đều là số lẻ?
A. 90.
B. 5.
C. 180.
D. 10 .
- Câu 2 : Cho đa giác đều 2019 đỉnh. Khi đó số tứ giác mà mỗi đỉnh được lấy từ các đỉnh của đa giác đều đã cho và không có cạnh nào là cạnh của đa giác đều đã cho là:
A.
B. - 2019
C. 504,75
D.
- Câu 3 : Một công việc để hoàng thành bắt buộc phải trải qua hai bước, bước thứ nhất có m cách thực hiện và bước thứ hai có n cách thực hiện. Số cách để hoàn thành công việc đã cho bằng
A. m + n
B.
C. mn
D.
- Câu 4 : Từ các chữ số 1,2,3,....,9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau.
- Câu 5 : Một lớp học có 12 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là
A. 120
B. 231
C. 210
D. 22
- Câu 6 : Một tổ có 10 học sinh. Số cách chọn ra hai bạn học sinh làm tổ trưởng và tổ phó là:
A. 10
B. 90.
C. 45.
D. 24.
- Câu 7 : Có bao nhiêu cách chọn ra một tổ trưởng và một tổ phó từ một tổ có 10 người? Biết khả năng được chọn của mỗi người trong tổ là như nhau.
A. 100
B. 90
C. 50
D. 45
- Câu 8 : Nhãn mỗi chiếc ghế trong một hội trường gồm hai phần : phần đầu là một chữ cái ( trong bảng 24 chữ cái tiếng Việt ), phần thứ hai là một số nguyên dương nhỏ hơn 26. Hỏi có nhiều nhất bao nhiêu chiếc ghế được ghi nhãn khác nhau ?
A. 624
B. 600
C. 49
D. 648
- Câu 9 : Trong một lớp học có 20 học sinh nam và 24 học sinh nữ. Giáo viên chủ nhiệm cần chọn hai học sinh: 1 nam và 1 nữ tham gia đội cờ đỏ. Hỏi giáo viên chủ nhiệm đó có bao nhiêu cách chọn?
A. 44
B. 480
C. 20
D. 24
- Câu 10 : Một bộ đồ chơi ghép hình gồm các miếng nhựa. mỗi miếng nhựa được đặc trưng bởi ba yếu tố: màu sắc, hình dạng và kích cỡ. Biết rằng có 4 màu (xanh, đỏ, vàng, tím), có 3 hình dạng (hình tròn, hình vuông, hình tam giác) và 2 kích cỡ (to, nhỏ). Hộp đồ chơi đó có số miếng nhựa nhiều nhất là:
A. 24
B. 9
C. 26
D. 20
- Câu 11 : Gọi A là tập hợp tất cả các số có dạng với a, b, c . Số phần tử của tập hợp A là
- Câu 12 : Từ các số 0, 1, 3, 4, 5, 7 có thể lập được bao nhiêu số tự nhiên có sáu chữ số khác nhau?
A. 720
B. 600
C. 625
D. 240
- Câu 13 : Tập hợp A = {1,2,....,10} Số cách chọn ra 2 phần tử của A gồm 1 phần tử chẵn và 1 phần tử lẻ bằng
- Câu 14 : Từ các số 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số tự nhiên có sáu chữ số đôi một khác nhau trong đó các chữ số 1, 2, 3 luôn có mặt và đứng cạnh nhau?
A. 96
B. 480
C. 576
D. 144
- Câu 15 : Cho hai đường thẳng và song song với nhau. Trên đường thẳng cho 5 điểm phân biệt, trên đường thẳng cho 7 điểm phân biệt. Số tam giác có đỉnh là các điểm trong 12 điểm đã cho là:
A. 350.
B. 210.
C. 175.
D. 220.
- Câu 16 : Có bao nhiêu số tự nhiên có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?
A. 234.
B. 132.
C. 243.
D. 432.
- Câu 17 : Cho tập hợp S = {1;2;3;4;5;6}. Gọi M là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lấy từ S sao cho tổng của các chữ số hàng đơn vị , hàng chục và hàng trăm lớn hơn tổng các chữ số còn lại là 3. Tính tổng của các phần tử của tập hợp M.
A. T = 11003984
B. T = 36011952
C. T = 12003984
D. T = 18005967
- Câu 18 : Cho một bảng ô vuông 3x3.
A. P(A) =
B. P(A) =
C. P(A) =
D. P(A) =
- Câu 19 : Lấy ngẫu nhiên một số tự nhiên có 9 chữ số khác nhau. Tính xác suất để số đó chia hết cho 3.
A.
B.
C.
D.
- Câu 20 : Gọi S là tập hợp các số tự nhiên gồm bốn chữ số đôi một khác nhau được lấy từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ S. Tính xác suất P để được một số chia hết cho 11 và tổng bốn chữ số của nó cũng chia hết cho 11.
- Câu 21 : Cho tập A = {3;4;5;6}. Tìm số các số tự nhiên có bốn chữ số được thành lập từ tập A sao cho trong mỗi số tự nhiên đó, hai chữ số 3 và 4 mỗi chữ số có mặt nhiều nhất 2 lần, còn hai chữ số 5 và 6 mỗi chữ số có mặt không quá 1 lần.
A. 24
B. 30
C. 102
D. 360
- Câu 22 : Với k và n là các số nguyên dương tùy ý thỏa mãn k n, mệnh đề nào dưới đây sai?
- Câu 23 : Với k và n là hai số nguyên dương tùy ý thỏa mãn kn. Công thức tính số tổ hợp chập k của n phần tử là
- Câu 24 : Có bao nhiêu cách xếp chỗ ngồi cho 4 bạn học sinh vào dãy có 4 ghế?
A. 8 cách.
B. 12 cách.
C. 24 cách.
D. 4 cách.
- Câu 25 : Cho trước 5 chiếc ghế xếp thành một hàng ngang. Số cách xếp ba bạn A, B, C vào 5 chiếc ghế đó sao cho mỗi bạn ngồi một ghế là
A.
B. 6
C.
D. 15
- Câu 26 : Có bao nhiêu cách xếp chỗ ngồi cho bốn bạn học sinh vào bốn chiếc ghế kê thành một hàng ngang?
A. 24
B. 4
C. 12
D. 8
- Câu 27 : Một tổ học sinh có 5 học sinh nam và 7 học sinh nữ. Có bao nhiêu cách chọn 4 học sinh của tổ để tham ra một buổi lao động?
- Câu 28 : Với k, n là hai số nguyên dương tùy ý k n, mệnh đề nào dưới đây đúng?
- Câu 29 : Trong các mệnh đề sau, mệnh đề nào sai?
A.
B.
C.
D.
- Câu 30 : Với k và n là hai số nguyên dương tùy ý thỏa mãn k n, mệnh đề nào dưới đây là đúng?
A.
B.
C.
D.
- Câu 31 : Số cách xếp 4 học sinh vào một dãy ghế dài gồm 10 ghế, mỗi ghế chỉ một học sinh ngồi bằng
- Câu 32 : Số tập con gồm đúng 3 phần tử của tập hợp gồm 10 phần tử bằng
- Câu 33 : Kí hiệu: (với k; n là những số nguyên dương và k n) có ý nghĩa là
A. Chỉnh hợp chập k của n phần tử.
B. Số tổ hợp chập k của n phần tử.
C. Tổ hợp chập k của n phần tử.
D. Số chỉnh hợp chập k của n phần tử.
- Câu 34 : Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là :
- Câu 35 : Từ các chữ số 1, 2, 3, 4, 5, 6. Có thể lập được bao nhiêu số có 3 chữ số khác nhau?
A. 216
B. 120
C. 504
D. 6
- Câu 36 : Trong mặt phẳng cho tập S gồm 10 điểm trong đó không có 3 điểm nào thẳng hàng. Có bao nhiêu tam giác có 3 đỉnh đều thuộc S?
A. 720.
B. 120.
C. 59049.
D. 3628800.
- Câu 37 : Số tập con có 3 phần tử của một tập hợp có 7 phần tử là
- Câu 38 : Cho tập hợp X có 20 phần tử. Số tập con gồm 3 phần tử của X là
- Câu 39 : Kí hiệu là số tổ hợp chập k của n phần tử (0 k n). Mệnh đề nào sau đây đúng?
- Câu 40 : Với k và n là hai số nguyên dương tùy ý thỏa mãn k n, mệnh đề nào dưới đây đúng?
- Câu 41 : Cho số nguyên dương n và số nguyên dương k với 0 ≤ k ≤ n. Mệnh đề nào sau đây đúng?
- Câu 42 : Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau lập từ các chữ số 1, 2, 3, 4, 5, 6
A. 20 số
B. 216 số
C. 729 số
D. 120 số
- Câu 43 : Cho tập hợp A = {1,2,3,...,10}. Một tổ hợp chập 2 của các phần tử tập A là
A. {1;2}
B.
C.
D. (1;2)
- Câu 44 : Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ 2 chức vụ tổ trưởng và tổ phó.
- Câu 45 : Với k, n là số nguyên dương 1≤k ≤ n. Đẳng thức nào sau đây là đúng?
- Câu 46 : Chọn kết luận đúng
- Câu 47 : Trong các công thức sau, công thức nào đúng?
- Câu 48 : Với k và n là hai số nguyên dương tùy ý thỏa mãn kn , mệnh đề nào dưới đây đúng?
- Câu 49 : Cho tập hợp S gồm 5 phần tử. Số tập con gồm 2 phần tử của S là:
- Câu 50 : Cho nN và n! = 1. Số giá trị của n thỏa mãn giả thiết đã cho là
A. 1.
B. 2.
C. 0.
D. Vô số.
- Câu 51 : Với k và n là hai số nguyên dương tùy ý thỏa mãn k ≤ n. Mệnh đề nào sau đây đúng?
- Câu 52 : Số các tổ hợp chập k của một tập hợp có n phần tử 1 k n là :
- Câu 53 : Cho tập hợp M có 10 phần tử. Số tập hợp con gồm 2 phần tử của M là
- Câu 54 : Có bao nhiêu cách chọn hai học sinh từ một nhóm gồm 41 học sinh?
- Câu 55 : Với k và n là hai số nguyên dương tùy ý thỏa mãn k≤n , mệnh đề nào dưới đây đúng?
- Câu 56 : Công thức tính số các chỉnh hợp chập k của một tập có n phần tử 1 ≤ k ≤ n là
- Câu 57 : Cho k, n, 1kn là các số nguyên dương bất kì. Mệnh đề nào sau đây sai?
- Câu 58 : Cho n2, n N thỏa mãn : . Giá trị của n là
A. 3.
B. 4.
C. 5.
D. 6.
- Câu 59 : Có bao nhiêu cách chia 20 chiếc bút chì giống nhau cho ba bạn Bắc, Trung, Nam sao cho mỗi bạn được ít nhất một chiếc bút chì
A. 153
B. 210
C. 190
D. 171
- Câu 60 : Mệnh đề nào sau đây sai ?
A. Số tập con có 4 phần tử của tập 6 phần tử là .
B. Số cách xếp 4 quyển sách vào 4 trong 6 vị trí trên giá là .
C. Số cách chọn và xếp thứ tự 4 học sinh từ nhóm 6 học sinh là .
D. Số cách xếp 4 quyển sách trong 6 quyển sách vào 4 vị trí trên giá là .
- Câu 61 : Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây không phải là phương trình mặt cầu?
A. - 1 = 0
B. + 2x - 4y + 2z + 17 = 0
C. + 2x - 4y + 6z + 5 = 0
D. - 2x + y - z = 0
- Câu 62 : Một đội văn nghệ có 10 người gồm 6 nam và 4 nữ. Cần chọn ra một bạn nam và một bạn nữ để hát song ca. Hỏi có bao nhiêu cách chọn?
A. 1
B. 24
C. 10
D.
- Câu 63 : Có bao nhiêu cách sắp xếp 5 học sinh theo một hàng ngang?
A. 10.
B. 24.
C. 5.
D. 120.
- Câu 64 : Số các chỉnh hợp chập k của một tập hợp gồm n phần tử (với k,n ).
- Câu 65 : Mệnh đề nào sau đây sai?
A. Số tập con có 2 phần tử của tập 6 phần tử là .
B. Số tam giác được tạo ra từ 9 điểm phân biệt (trong đó không có 3 điểm nào thẳng hàng) là .
C. Số vecto tối đa tạo bởi 20 điểm phân biệt là .
D. Số cách xếp 3 quyển sách trong quyển sách vào 7 vị trí trên giá là .
- Câu 66 : Trong tủ quần áo của bạn An có 4 chiếc áo khác nhau và 3 chiếc quần khác nhau. Hỏi bạn An có bao nhiêu cách để chọn 1 bộ quần áo để mặc?
A. 7
B. 27
C. 64
D. 12
- Câu 67 : Cho tập M = {1;2;3;4;5;6;7;8;9}. Có bao nhiêu tập con có 4 phần tử lấy từ các phần tử của tập M?
- Câu 68 : Cho tập hợp A gồm có 9 phần tử. Số tập con gồm có 4 phần tử của tập hợp A là
A.
B.
C. 36
D.
- Câu 69 : Với k và n là hai số nguyên dương tùy ý thỏa mãn k n, mệnh đề nào dưới đây đúng?
- Câu 70 : Cho n là số tự nhiên lớn hơn 2. Số các chỉnh hợp chập 2 của n phần tử là
A.
B. 2!.n.(n-1)
C. n.(n-1)
D. 2n
- Câu 71 : Một tổ có 10 học sinh. Số cách chọn ra 2 học sinh từ tổ đó để giữ 2 chức vụ tổ trưởng và tổ phó là
- Câu 72 : Với k và n là hai số nguyên dương tùy ý thỏa mãn k ≤ n, mệnh đề nào dưới đây đúng?
- Câu 73 : Số cách xếp 3 người ngồi vào 5 ghế xếp thành hàng ngang sao cho mỗi người ngồi một ghế là
A.
B.
C. 5!
D. 3!
- Câu 74 : Số các số tự nhiên gồm ba chữ số khác nhau lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là
- Câu 75 : Cho n điểm phân biệt trên mặt phẳng (n , n > 2). Số véctơ khác có cả điểm đầu và điểm cuối là các điểm đã cho bằng
A. n(n-1)
B.
C. 2n(n-1)
D. 2n
- Câu 76 : Với k và n là hai số nguyên dương tùy ý thỏa mãn k n, mệnh đề nào dưới đây sai?
- Câu 77 : Cho tập hợp A có 26 phần tử. Hỏi A có bao nhiêu tập con gồm 6 phần tử?
A.
B. 26
C.
D.
- Câu 78 : Một lớp học có 40 học sinh, biết rằng các bạn đều có khả năng được chọn như nhau, số cách chọn ra ba bạn để phân công làm tổ trưởng tổ 1, tổ 2 và tổ 3 là
- Câu 79 : Một tập A có n phần tử, với n là số tự nhiên lớn hơn 1, số tập con khác rỗng của tập A là
A. n!
B. n! - 1
C. - 1
D.
- Câu 80 : Số cách xếp 3 học sinh vào một hàng ghế dài gồm 10 ghế, mỗi ghế chỉ một học sinh ngồi bằng
- Câu 81 : Tổ 1 gồm 10 bạn học sinh. Có bao nhiêu cách để cô giáo chủ nhiệm chọn ra 4 em đi bưng bàn ghế?
A.
B. 4!
C.
D. 6!
- Câu 82 : Từ các chữ số 1,2,3,....,9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau
- Câu 83 : Trong mặt phẳng, cho tập S gồm 10 điểm, trong đó không có 3 điểm nào thẳng hàng. Có bao nhiêu tam giác có 3 đỉnh đều thuộc ?
A. 720.
B. 120.
C. 59049.
D. 3628800.
- Câu 84 : Một tập hợp M có tập con. Hỏi M có bao nhiêu tập con có ít nhất 2017 phần tử?
A. 2019.
B. 2018.
C.
D.
- Câu 85 : Một lớp học gồm có 20 học sinh nam và 15 học sinh nữ. Cần chọn ra 2 học sinh, 1 nam và 1 nữ để phân công trực nhật. Số cách chọn là
A. 300
B.
C. 35
D.
- Câu 86 : Cho k, n là số nguyên dương thỏa mãn 1k n. Đẳng thức nào sau đây đúng?
- Câu 87 : Cho đa giác đều có 20 cạnh. Có bao nhiêu hình chữ nhật (không phải là hình vuông), có các đỉnh là đỉnh của đa giác đều đã cho?
A. 45
B. 35
C. 40
D. 50
- Câu 88 : Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau?
A. 729
B. 1000
C. 648
D. 720
- Câu 89 : Cho các số nguyên dương tùy ý k, n thỏa mãn kn. Đẳng thức nào dưới đây đúng ?
- Câu 90 : Cho A = {1,2,3,4}. Từ A lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?
A. 32
B. 24
C. 256
D. 18
- Câu 91 : Trong kho đèn trang trí đang có 5bóng đèn loại I, 7 bóng đèn loại II, các bóng đèn đều khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kỳ. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II.
A. 246
B. 3480
C. 245
D. 3360
- Câu 92 : Gieo 2 xúc xắc màu xanh và đỏ cùng 1 lần. Hỏi có bao nhiêu khả năng xảy ra số chấm xuất hiện của xúc xắc màu xanh nhiều hơn số chấm xuất hiện trên xúc xắc màu đỏ.
A. 18
B. 15
C. 30
D. 16
- Câu 93 : Từ các chữ số 1,2,3,4,5,6 lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau?
A.
B.
C.
D. 6!
- Câu 94 : Có tất cả 120 cách chọn 3 học sinh từ nhóm n(chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây?
A. n(n+1)(n+2) = 120
B. n(n+1)(n+2) = 720
C. n(n-1)(n-2) = 120
D. n(n-1)(n-2) = 720
- Câu 95 : Cho n là số nguyên dương và = 792. Tính .
A. 3960
B. 95040
C. 95004
D. 95400
- Câu 96 : Có 6 học sinh và 3thầy giáo A, B, C ngồi trên một hàng ngang có 9 ghế. Số cách xếp chỗ ngồi cho 9 người đó sao cho mỗi thầy giáo ngồi giữa hai học sinh là
A. 43200
B. 94536
C. 55012
D. 35684
- Câu 97 : Số cách chọn 3 người từ một nhóm có 12 người là
A. 4
B.
C.
D.
- Câu 98 : Có bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau, sao cho trong mỗi số đó nhất thiết phải có mặt chữ số 0?
A. 15120
B. 7056
C. 5040
D. 120
- Câu 99 : Từ một tập gồm 10 câu hỏi trong đó có 4 câu lý thuyết và 6 câu bài tập, người ta tạo thành các đề thi. Biết rằng một đề thi phải gồm 3 câu hỏi trong đó có ít nhất một câu lý thuyết và một câu bài tập. Hỏi có thể tạo bao nhiêu đề khác nhau ?
A. 96
B. 100
C. 60
D. 36
- Câu 100 : Số tập con gồm nhiều nhất 3 phần tử của tập A = {1,2,....,10} là
- Câu 101 : Có bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau.
A. 1000
B. 720
C. 729
D. 648
- Câu 102 : Có bao nhiêu cách bỏ đồng thời 7 quả bóng bàn giống nhau vào 4 hộp khác nhau sao cho mỗi hộp có ít nhất 1 quả?
A.
B. 20
C. 12
D.
- Câu 103 : Tính tổng S =
c
- Câu 104 : Cho tứ giác ABCD. Trên các cạnh AB, BC, CD, AD lần lượt lấy 3;4;5;6 điểm phân biệt khác các điểm A, B, C, D. Số tam giác phân biệt có các đỉnh là các điểm vừa lấy là
A. 781
B. 624
C. 816
D. 342
- Câu 105 : Đội văn nghệ của trường THPT Hùng Vương có 9 học sinh, trong đó có 4 học sinh lớp 12, 3 học sinh lớp 11 và 2 học sinh lớp 10. Hỏi có bao nhiêu cách chọn ra một nhóm có ít nhất 3 học sinh để biểu diễn dịp 26 tháng 3 sao cho mỗi khối có ít nhất một học sinh, biết rằng năng khiếu văn nghệ của các em là như nhau
A. 24
B. 315
C. 420
D. 342
- Câu 106 : Có bao nhiêu số tự nhiên có hai chữ số, các chữ số khác nhau và đều khác không?
- Câu 107 : Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt (các điểm không trùng với các đỉnh của tam giác). Tìm n biết rằng số tam giác có các đỉnh thuộc n+6 điểm đã cho là 247
A. 6
B. 7
C. 5
D. 8
- Câu 108 : Cho tam giác ABC, gọi S là tập hợp gồm 4 đường thẳng song song với AB, 6 đường thẳng song song với BC và 8 đường thẳng song song với AC. Hỏi có bao nhiêu hình bình hành được tạo thành từ các đường thẳng thuộc tập
A. 2712
B. 678
C. 652
D. 2436
- Câu 109 : Bé Minh có một bảng hình chữ nhật gồm 6 hình vuông đơn vị, cố định không xoay như hình vẽ. Bé muốn dùng 3 màu để tô tất cả các cạnh của các hình vuông đơn vị, mỗi cạnh tô một lần sao cho hình vuông đơn vị được tô bởi đúng 2 màu, trong đó mỗi màu tô đúng hai cạnh. Hỏi bé Minh có tất cả bao nhiêu cách tô màu bảng?
A. 139968.
B. 4374.
C. 576.
D. 15552.
- Câu 110 : Có bao nhiêu cách chia hết 4 chiếc bánh khác nhau cho 3 em nhỏ, biết rằng mỗi em nhận được ít nhất 1 chiếc.
A. 12
B. 3
C. 36
D. 72
- Câu 111 : Cho tập hợp A có 3 phần tử, số hoán vị các phần tử của A bằng
A. 5
B. 4
C. 6
D. 7
- Câu 112 : Với k, n là hai số nguyên dương tùy ý thỏa mãn k ≤ n, mệnh đề nào dưới đây sai??
- Câu 113 : Với k, n là hai số nguyên dương tùy ý thỏa mãn k ≤ n, mệnh đề nào dưới đây sai?
- Câu 114 : Với k, n là hai số nguyên dương tùy ý thỏa mãn k ≤ n, mệnh đề nào dưới đây sai?
- Câu 115 : Cho k, n(k < n) là các số nguyên dương, mệnh đề nào dưới đây sai?
- Câu 116 : Với k, n là hai số nguyên dương tùy ý thỏa mãn k ≤ n-1, mệnh đề nào dưới đây sai?
- Câu 117 : Từ các chữ số thuộc tập hợp S = {1;2;3;4;5;6;7;8;9} có bao nhiêu số có 9 chữ số khác nhau sao cho chữ số 1 đứng trước chữ số 2, chữ số 3 đứng trước chữ số 4, chữ số 5 đứng trước chữ số 6 ?
A. 7560.
B. 272160.
C. 45360.
D. 362880.
- Câu 118 : Từ các chữ số {0;1;2;3;4} lập được tất cả bao nhiêu số chẵn có 4 chữ số khác nhau sao cho chữ số 2 và 3 đứng cạnh nhau.
A. 20
B. 16
C. 14
D. 18
- Câu 119 : Đề kiểm tra 15 phút có 10 câu trắc nghiệm, mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, mỗi câu trả lời đúng được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.
- Câu 120 : Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ?
A. 2448
B. 3600
C. 2324
D. 2592
- Câu 121 : Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn đứng liền nhau?
A. 864
B. 1728
C. 576
D. 792
- Câu 122 : Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời hai chữ số lẻ đứng liền nhau?
A. 2736
B. 936
C. 576
D. 1152
- Câu 123 : Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn đứng liền nhau và hai chữ số lẻ đứng liền nhau?
A. 504
B. 576
C. 2448
D. 936
- Câu 124 : Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ?
A. 72
B. 576
C. 216
D. 504
- Câu 125 : Từ các chữ số thuộc tập X = {0;1;2;3;4;5;6;7} có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số khác nhau sao cho mỗi số tự nhiên đó đều chia hết cho 18.
A. 720.
B. 860.
C. 984.
D. 1228.
- Câu 126 : Cho tập hợp S có 12 phần tử. Hỏi có bao nhiêu cách chia tập hợp S thành hai tập con (không kể thứ tự) mà hợp của chúng bằng S ?
- Câu 127 : Trong mặt phẳng cho 18 điểm phân biệt trong đó không có ba điểm nào thẳng hàng. Số tam giác có các đỉnh thuộc 18 điểm đã cho là
- Câu 128 : Trong mặt phẳng cho 10 điểm phân biệt. Số vectơ khác , có điểm đầu và điểm cuối lấy trong các điểm đã cho là
C. 10!
- Câu 129 : Một lớp có 33 học sinh, cần chọn ra 6 học sinh để trực trường vào buổi chiều. Hỏi có bao nhiêu cách chọn?
A. 6! cách
B. cách
C. cách
D. cách
- Câu 130 : Một hộp đựng 20 viên bi khác nhau được đánh số từ 1 đến 20. Lấy ba viên bi từ hộp trên rồi cộng số ghi trên đó lại. Hỏi có bao nhiêu cách lấy để kết quả thu được là một số chia hết cho 3?
A. 90
B. 1200
C. 384
D. 1025
- Câu 131 : Có bao nhiêu đường thẳng cắt Hypebol y = tại hai điểm phân biệt mà cả hai điểm đó đều có tọa độ nguyên ?
A.12.
B.4.
C.6.
D.3.
- Câu 132 : Trên bảng ô vuông của một bảng 4x4 ô vuông, người ta điền một trong hai số 6 hoặc -6 sao cho tổng các số trong mỗi hàng và trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách điền như thế? (tham khảo hình vẽ ví dụ cho một trường hợp điền số thỏa mãn yêu cầu)
A. 36
B. 16
C. 90
D. 42
- Câu 133 : Với k và n là hai số nguyên dương tùy ý thỏa mãn kn, mệnh đề nào dưới đây đúng ?
- Câu 134 : Số các hoán vị của 4 phần tử là
A. 24
B. 4
C. 12
D. 48
- Câu 135 : Sắp xếp 20 người vào 2 bàn tròn A, B phân biệt, mỗi bàn gồm 10 chỗ ngồi. Số cách sắp xếp là
A. .9!.9!
B. .10!.10!
C.
D. 2.9!.9!
- Câu 136 : Số cách chọn ra 3 học sinh trong số 10 học sinh không tính thứ tự là
A. 6
B. 120
C. 720
D. 30
- Câu 137 : Cho một hình vuông có cạnh bằng 4. Chia hình vuông này thành 16 hình vuông đơn vị có cạnh bằng 1. Hỏi có bao nhiêu tam giác có các đỉnh là các đỉnh của hình vuông đơn vị?
A. 2248
B. 2148
C. 2160
D. 2168
- Câu 138 : Tập giá trị của hàm số y = là
A. [3;7]
B. [3;]
C. (3,7)
D. [2;]
- Câu 139 : Cho k, n (k < n) là các số nguyên dương bất kì. Mệnh đề nào sau đây đúng?
- Câu 140 : Trong mệnh đề sau, mệnh để nào sai?
- Câu 141 : Tìm tất cả các giá trị của n thỏa mãn .
A. n = -3; n= 3; n= 4
B. n = 3; n= 4
C. n = 3
D. n= 4
- Câu 142 : Biết . Ta có bằng
A. 4096.
B. 64.
C. 1204.
D. 1024.
- Câu 143 : Cho số tự nhiên n thỏa mãn . Mệnh đề nào sau đây đúng?
A. n5
B. n3
C. n7
D. n2
- Câu 144 : Cuối năm học trường Chuyên Sư phạm tổ chức 3 tiết mục văn nghệ chia tay khối 12 ra trường. Tất cả các học sinh lớp 12A đều tham gia nhưng mỗi người chỉ được đăng kí không quá 2 tiết mục. Biết lớp 12A có 44 học sinh, hỏi có bao nhiêu cách để lớp lựa chọn?
- Câu 145 : Số chỉnh hợp chập 3 của 10 phần tử
- Câu 146 : Tổng S = bằng
- Câu 147 : Tìm nN biết khai triển nhị thức 2 có tất cả 15 số hạng.
A. 13
B. 10
C. 17
D. 11
- Câu 148 : Trong khai triển nhị thức có tất cả 19 số hạng. Vậy n bằng
A. 11
B. 12
C. 10
D. 19
- Câu 149 : Khai triển nhị thức
2 + 3 ) 16 có bao nhiêu số hạng?A. 16
B. 17
C. 15
D.
- Câu 150 : Có bao nhiêu số hạng trong khai triển nhị thức thành đa thức.
A. 2018
B. 2019
C. 2020
D. 2017
- Câu 151 : Cho khai triển . Tính tổng các hệ số trong khai triển?
A. 2019
B.
C.
D.
- Câu 152 : Cho T(x) = . Sau khi khai triển và rút gọn T(x) có bao nhiêu số hạng?
A.36
B. 38
C. 44
D. 40
- Câu 153 : Có bao nhiêu hạng tử là số nguyên trong khai triển ?
A. 32
B. 31
C. 33
D. 30
- Câu 154 : Hệ số của số hạng chứa trong khai triển ( với x 0) bằng
A. 36
B. 84
C. 126
D. 54
- Câu 155 : Hệ số của trong khai triển nhị thức bằng
A. 820
B. 220
C. 792
D. 210
- Câu 156 : Cho số nguyên dương n và hệ số của trong khai triển Newton của bằng 31.Khi đó n bằng
A. 31
B. 33
C. 32
D. 124
- Câu 157 : Cho số nguyên dương n và hệ số của trong khai triển Newton của bằng 459. Khi đó n bằng:
A. 51
B. 52
C. 50
D. 155
- Câu 158 : Trong khai triển biết tổng các hệ số . Hệ số của bằng
A. 15
B. 21
C. 35
D. 20
- Câu 159 : Tìm hệ số của số hạng không chứa x trong khai triển .
- Câu 160 : Tìm hệ số của số hạng chứa trong khai triển nhị thức Niutơn
A. 160
B. -960
C. 960
D. -160
- Câu 161 : Hệ số của số hạng chứa trong khai triển là
A. 270
B. 810
C. 81
D. 1620
- Câu 162 : Khai triển nhị thức có tất cả 2019 số hạng. Tìm n.
A. 2018
B. 2014
C. 2013
D. 2015
- Câu 163 : Cho biểu thức: P(x) = . Hệ số của số hạng chứa trong khai triển thành đa thức của P(x) là
A. 3003
B. 8000
C. 8008
D. 3000
- Câu 164 : Số hạng không chứa z trong khai triển là?
- Câu 165 : Tìm số hạng không chứa x trong khai triển nhị thức Newton
- Câu 166 : Cho khai triển với n là số nguyên dương. Tìm hệ số của số hạng chứa trong khai triển biết .
A. 480
B. 720
C. 240
D. 120
- Câu 167 : Hệ số của trong khai triển biểu thức bằng.
A. 61268.
B. 61204.
C. 3160.
D. 3320.
- Câu 168 : Tìm hệ số của số hạng không chứa x trong khai triển
- Câu 169 : Trong khai triển , số hạng không chứa x là
A. 84.
B. 43008.
C. 4308.
D. 86016.
- Câu 170 : Tìm hệ số của số hạng chứa trong khai triển
- Câu 171 : Số hạng không chứa x trong khai triển là
A. -1760
B. 1760
C. 220
D. -220
- Câu 172 : Tìm hệ số của số hạng chứa trong khai triển .
- Câu 173 : Hệ số của trong khai triển biểu thức P(x) = x bằng
A. -13848
B. 13368
C. 13848
D. -13368
- Câu 174 : Cho n là số nguyên dương thỏa mãn . Hệ số của số hạng chứa trong khai triển biểu thức bằng
A. 14784
B. 29568
C. -1774080
D. -14784
- Câu 175 : Hệ số của trong khai triển của biểu thức là
A. 1215.
B. 54.
C. 135.
D. 15.
- Câu 176 : Trong khai triển nhị thức , số hạng không chứa x là:
A. -210
B. 120
C. 210
D. -120
- Câu 177 : Số hạng không chứa x trong khai triển bằng:
A. -459
B. 459
C. -495
D. 495
- Câu 178 : Tìm số hạng không chứa x trong khai triển
- Câu 179 : Trong khai triển Newton của biểu thức , số hạng chứa là.
- Câu 180 : Cho biểu thức P = với x > 0. Tìm số hạng không chứa x trong khai triển nhị thức Niutơn P.
A. 160
B. 200
C. 210
D. -210
- Câu 181 : Biết tổng các hệ số trong khai triển nhị thức Newton của bằng . Tìm hệ số của .
A. -161700
B. -19600
C. -20212500
D. -2450000
- Câu 182 : Tìm hệ số của số hạng chứa trong khai triển .
- Câu 183 : Hệ số của trong khai triển của biểu thức bằng
A. 3124
B. 2268
C. 13440
D. 210
- Câu 184 : Tìm số hạng không chứa x trong khai triển , x0.
A. -240
B. 15
C. 240
D. -15
- Câu 185 : Số hạng không chứa x trong khai triển bằng:
- Câu 186 : Cho đa thức f(x) = . Tìm hệ số , biết rằng: = 49152n
A. = 945
B. = 252
C. = 5670
D. = 1512
- Câu 187 : Hệ số trong khai triển đa thức P(x) = có giá trị bằng đại lượng nào sau đây?
- Câu 188 : Tính tổng các hệ số trong khai triển
A. -1
B. 2019
C. -2019
D. 1
- Câu 189 : Số hạng không chứa x trong khai triển là
A. 60
B. 120
C. 480
D. 240
- Câu 190 : Tìm hệ số của số hạng chứa trong khai triển biết
A. 505
B. -405
C. 495
D. -505
- Câu 191 : Cho số nguyên dương thỏa mãn = 0. Tìm hệ số của số hạng chứa trong khai triển nhị thức Niu-tơn của .
- Câu 192 : Biết n là số nguyên dương thỏa mãn 3 số 0; theo thứ tự là số hạng đầu, số hạng thứ 3 và số hạng thứ 10 của một cấp số cộng. Hãy tìm số hạng không chứa x trong khai triển của
A. 45
B. -45
C. 90
D. -90
- Câu 193 : Trong khai triển Newton của biểu thức , số hạng chứa là
- Câu 194 : Cho số nguyên dương n thỏa mãn điều kiện: 720. Hệ số của trong khai triển bằng:
A. -120
B. -560
C. 120
D. 560
- Câu 195 : Cho khai triển . Hỏi có bao nhiêu giá trị của n 2019 sao cho tồn tại thỏa mãn .
A. 90
B. 642
C. 21
D. 91
- Câu 196 : Cho n là số nguyên dương thỏa mãn = 78. Số hạng không chứa x trong khai triển bằng
A. 3960
B. 220
C. 1760
D. 59136
- Câu 197 : Cho khai triển , trong đó . Biết các hệ số thỏa mãn hệ thức . Hệ số bằng
A. 130272
B. 126720
C. 130127
D. 213013
- Câu 198 : Cho khai triển T =
2019 ) 2018 . Hệ số của số hạng chứa x trong khai triển bằngA. 0
B. 1
C. 4
D. 4037
- Câu 199 : Tìm hệ số của số hạng chứa trong khai triển .
A. 1902
B. 7752
C. 252
D. 582
- Câu 200 : Cho n và k là hai số nguyên dương tùy ý thỏa mãn k n mệnh đề nào dưới đây đúng?
- Câu 201 : Có bao nhiêu số nguyên dương n nghiệm đúng bất phương trình
A. 1003
B. 1002
C. 1004
D. 1000
- Câu 202 : Cho khai triển thỏa mãn . Giá trị của số nguyên dương n bằng:
A. 5
B. 6
C. 4
D. 7
- Câu 203 : Tính tổng S =
- Câu 204 : Cho . Tính T = ?
- Câu 205 : Cho tập hợp A có 20 phần tử. Có bao nhiêu tập con của A khác rỗng và số phần tử là số chẵn?
- Câu 206 : Tổng bằng:
A. 1
B. -1
C. 0
D.
- Câu 207 : Xét một phép thử có không gian mẫu và A là một biến cố của phép thử đó. Phát biểu nào sau đây sai ?
A. Xác suất của biến cố A là P(A) =
B. 0P(A)1
C. P(A) = 1 - .
D. P(A) = 0 khi và chỉ khi A là biến cố chắc chắn.
- Câu 208 : Cho phép thử là “gieo 2019 đồng xu phân biệt” và xét sự xuất hiện mặt sấp và mặt ngửa của các đồng xu. Khi đó số phần tử của không gian mẫu bằng
A. 2019
B.
C.
D. 2.
- Câu 209 : Cho phép thử là “gieo 10 con súc sắc cân đối, đồng chất phân biệt”. Khi đó số phần tử của không gian mẫu bằng
A. 6
B. 60
C. 10
D.
- Câu 210 : Cho phép thử là “gieo 10 đồng xu phân biệt” và xét sự xuất hiện mặt sấp và mặt ngửa của các đồng xu. Xác suất để có đúng một lần suất hiện mặt ngửa là
- Câu 211 : Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình + 2bx + 4 = 0 có nghiệm là
- Câu 212 : Tổ 1 của lớp 10A có 10 học sinh gồm 6 nam và 4 nữ. Cần chọn ra 2 bạn trong tổ 1 để phân công trực nhật. Xác suất để chọn được 1 bạn nam và 1 bạn nữ là
- Câu 213 : Một hộp đựng 6 quả cầu màu trắng và 4 quả cầu màu vàng. Lấy ngẫu nhiên từ hộp ra 4 quả cầu. Tính xác suất để trong quả cầu lấy được có đúng 4 quả cầu vàng.
- Câu 214 : Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác suất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.
A. 0,029
B. 0,019
C. 0,021
D. 0,017
- Câu 215 : Tại SEA Games 2019, môn bóng chuyền nam có 8 đội bóng tham dự, trong đó có hai đội Việt Nam và Thái Lan. Các đội bóng được chia ngẫu nhiên thành hai bảng có số đội bóng bằng nhau. Xác suất để hai đội Việt Nam và Thái Lan nằm ở hai bảng khác nhau bằng:
- Câu 216 : Trên kệ sách có 10 cuốn sách Toán và 5 cuốn sách Văn. Người ta lấy ngẫu nhiên lần lượt 3 cuốn sách mà không để lại. Tính xác suất để được hai cuốn sách đầu là Toán, cuốn thứ ba là Văn.
- Câu 217 : Cho tập hợp S = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên ba số từ tập S. Tính xác suất của biến cố trong ba số được chọn ra không chứa hai số nguyên liên tiếp nào.
- Câu 218 : Cho hình tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều cạnh tương ứng thành các phần bằng nhau. Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu. Lấy ra từ S một tam giác, xác suất để mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho bằng
- Câu 219 : Xếp ngẫu nhiên 21 học sinh, trong đó có đúng một bạn tên Thêm và đúng một bạn tên Quý vào ba bàn tròn có số chỗ ngồi lần lượt là 6, 7, 8. Xác suất để hai bạn Thêm và Quý ngồi cạnh nhau bằng
- Câu 220 : Xếp ngẫu nhiên 4 quyển sách Toán khác nhau và 4 quyển sách Hóa giống nhau vào một giá sách nằm ngang có 10 ô trống, mỗi quyển sách được xếp vào một ô. Xác suất để 4 quyển sách Toán xếp cạnh nhau và 4 quyển sách Hóa xếp cạnh nhau bằng
- Câu 221 : Gọi S là tập hợp tất cả các số tự nhiên gồm 3 chữ số. Chọn ngẫu nhiên một số thuộc S. Xác suất để số chọn được là một số tự nhiên chia hết cho 9 và có các chữ số đôi một khác nhau bằng
- Câu 222 : Có một dãy ghế gồm 6 ghế. Xếp ngẫu nhiên 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B, 2 học sinh lớp C ngồi vào dãy ghế sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để không có học sinh lớp C nào ngồi cạnh nhau bằng
- Câu 223 : Một tổ có 5 học sinh nữ và 6 học sinh nam. Xếp ngẫu nhiên các học sinh trên thành hàng ngang để chụp ảnh. Tính xác suất để không có hai học sinh nữ nào đứng cạnh nhau.
- Câu 224 : Có hai dãy ghế đối diện nhau, mỗi dãy có ba ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng?
- Câu 225 : Gọi S là tập hợp tất cả các số tự nhiên gồm 9 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn có đúng 4 chữ số lẻ và chữ số 0 đứng giữa hai chữ số lẻ (các chữ số liền trước và liền sau của chữ số 0 là các chữ số lẻ).
- Câu 226 : Giải bóng chuyền VTV Cup có 12 đội tham dự trong đó có 9 đội nước ngoài và 3 đội của Việt Nam. Ban tổ chức cho bốc thăm ngẫu nhiên để chia thành 3 bảng đấu A, B, C, mỗi bảng đấu có 4 đội. Xác suất để 3 đội Việt Nam ở 3 bảng đấu khác nhau là
- Câu 227 : Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh khối 10, 5 học sinh khối 11 và 3 học sinh khối 12 thành một hàng ngang. Xác suất để không có học sinh khối 11 nào xếp giữa hai học sinh khối 10 bằng
- Câu 228 : Chọn ngẫu nhiên một số tự nhiên nhỏ hơn 300. Gọi A là biến cố “số được chọn không chia hết cho 4”. Tính xác suất P(A) của biến cố A
A. P(A) =
B. P(A) =
C. P(A) =
D. P(A) =
- Câu 229 : Gọi S là tập hợp các số tự nhiên, mỗi số không có quá 3 chữ số và tổng các chữ số bằng 9. Lấy ngẫu nhiên một số từ . Tính xác suất để số lấy ra có chữ số hàng trăm là 4.
- Câu 230 : Gọi n(A) là số các kết quả thuận lợi cho biến cố liên quan đến một phép thử T và là số các kết quả có thể xảy ra của phép thử T đó. Xác suất P() của biến cố đối của biến cố A không là đẳng thức nào trong các đẳng thức sau?
A. P() =
B. P() = 1 - P(A)
C. P() =
D. P() =
- Câu 231 : Với các chữ “LẬP”, “HỌC”, “MAI”, “NGÀY”, “NGHIỆP”, “TẬP”, “VÌ”, mỗi chữ được viết lên một tấm bìa, sau đó người ta trải ra ngẫu nhiên. Xác suất để được dòng chữ “HỌC TẬP VÌ NGÀY MAI LẬP NGHIỆP” bằng:
- Câu 232 : Gieo một con súc sắc cân đối, đồng chất một lần. Xác suất để xuất hiện mặt chẵn chấm?
- Câu 233 : Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là:
- Câu 234 : Trong một lớp học gồm 15 học sinh nam và 10 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên giải bài tập. Tính xác suất để 4 học sinh được gọi đó có cả nam và nữ?
- Câu 235 : Một lớp có 20 học sinh nam và 18 học sinh nữ. Chọn ngẫu nhiên một học sinh. Tính xác suất chọn được một học sinh nữ.
- Câu 236 : Một hộp đựng 7 viên bi đỏ đánh số từ 1 đến 7 và 6 viên bi xanh đánh số từ 1 đến 6. Hỏi có bao nhiêu cách chọn hai viên bi từ hộp đó sao cho chúng khác màu và khác số?
A. 36
B. 42
C. 49
D. 30
- Câu 237 : Một hộp có 10 quả cầu xanh, 5 quả cầu đỏ. Lấy ngẫu nhiên 5 quả từ hộp đó. Xác suất để được 5 quả có đủ hai màu là
- Câu 238 : Một tổ học sinh có 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.
A. P(A) =
B. P(A) =
C. P(A) =
D. P(A) =
- Câu 239 : Lấy ngẫu nhiên một số nguyên dương không vượt quá 10000. Xác suất để số lấy được là bình phương của một số tự nhiên bằng? (tính dưới dạng %)
A. 1%
B. 5%
C. 3%
D. 2%
- Câu 240 : Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ
- Câu 241 : Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 7 quả cầu đỏ và 5 quả cầu màu xanh, hộp thứ hai chứa 6 quả cầu đỏ và 4 quả cầu màu xanh. Lấy ngẫu nhiên từ một hộp 1 quả cầu. Xác suất sao cho hai quả lấy ra cùng màu đỏ.
- Câu 242 : Một tổ học sinh có 7 nữ và 4 nam. Chọn ngẫu nhiên 2 người đi trực cờ đỏ. Tính xác suất sao cho 2 người được chọn đều là nam.
- Câu 243 : Đội văn nghệ của một lớp có 5 bạn nam và 7 bạn nữ. Chọn ngẫu nhiên 5 bạn tham gia biểu diễn, xác suất để trong 5bạn được chọn có cả nam và nữ, đồng thời số nam nhiều hơn số nữ bằng
- Câu 244 : Một người muốn gọi điện thoại nhưng nhớ được các chữ số đầu mà quên mất ba chữ số cuối của số cần gọi. Người đó chỉ nhớ rằng ba chữ số cuối đó phân biệt và có tổng bằng 5. Tính xác suất để người đó bấm máy một lần đúng số cần gọi.
- Câu 245 : Một người đang đứng tại gốc O của trục tọa độ Oxy. Do say rượu nên người này bước ngẫu nhiên sang trái hoặc sang phải trên trục tọa độ với độ dài mỗi bước bằng 1 đơn vị. Xác suất để sau 10 bước người này quay lại đúng gốc tọa độ O bằng
- Câu 246 : Có 8 học sinh nam, 5 học sinh nữ và 1 thầy giáo được sắp xếp ngẫu nhiên đứng thành một vòng tròn. Tính xác suất để thầy giáo đứng giữa 2 học sinh nam.
A. P =
B. P =
C. P =
D. P =
- Câu 247 : Gieo đồng thời hai con súc sắc cân đối và đồng chất.Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.
- Câu 248 : Kết quả (b,c) của việc gieo một con súc sắc cần đối hai lần liên tiếp, trong đó b là số chấm xuất hiện trong lần gieo thứ nhất, c là số chấm xuất hiện trong lần gieo thứ hai được thay vào phương trình bậc hai + bx + c = 0 (x). Tính xác suất để phương trình bậc hai đó có nghiệm.
- Câu 249 : Một đề kiểm tra Toán Đại số và Giải tích chương 2 của khối 11 có 20 câu trắc nghiệm. Mỗi câu có 4 phương án lựa chọn, trong đó chỉ có 1 đáp án đúng. Mỗi câu trả lời đúng được 0,5 điểm và mỗi câu trả lời sai không được điểm nào. Một học sinh không học bài nên tích ngẫu nhiên câu trả lời. Tính xác suất để học sinh nhận được 6 điểm (kết quả làm tròn đến 4 chữ số sau dấu phẩy thập phân).
A. 0,7873
B.
C. 0,0609
D. 0,0008
- Câu 250 : Một hộp đựng 15 quả cầu trong đó có 6 quả màu đỏ, 5 quả màu xanh, 4 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu trong 15 quả cầu đó. Tính xác suất để 6 quả lấy được có đủ ba màu.
- Câu 251 : Chọn ngẫu nhiên một số tự nhiên nhỏ hơn 300. Gọi A là biến cố “số được chọn không chia hết cho 3”. Tính xác suất P(A) của biến cố A.
A. P(A) =
B. P(A) =
C. P(A) =
D. P(A) =
- Câu 252 : Trong một hộp có 3 bi đỏ, 5 bi xanh và 7 bi vàng. Bốc ngẫu nhiên 4 viên. Xác suất để bốc được đủ 3 màu là
- Câu 253 : Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Tính xác suất chọn được số chia hết cho 6
A.
B.
C.
D.
- Câu 254 : Từ một hộp chứa 11 quả cầu màu đỏ và 4 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng
- Câu 255 : Trên giá sách có 4 quyển sách toán, 5 quyển sách lý. Lấy ngẫu nhiên ra 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có ít nhất một quyển toán.
- Câu 256 : Trong hệ trục tọa độ Oxy cho A(-2;0), B(-2;2), C(4;2), D(4;0). Chọn ngẫu nhiên một điểm có tọa độ (x;y) (với x, y ) nằm trong hình chữ nhật ABCD (kể cả các điểm trên cạnh). Gọi A là biến cố: “x, y đều chia hết cho 2”. Xác suất của biến cố A là .
A.
B.
C.
D.
- Câu 257 : Một chiếc hộp chứa 6 quả cầu màu xanh và 4 quả cầu màu đỏ. Lấy ngẫu nhiên từ chiếc hộp ra 5 quả cầu. Tính xác suất để trong 5 quả cầu lấy được có đúng 2 quả cầu màu đỏ.
A.
B.
C.
D.
- Câu 258 : Tổ toán của một trường THPT có 4 thầy giáo và 10 cô giáo. Tổ chọn ngẫu nhiên 2 giáo viên để đi tập huấn. Tính xác suất để 2 giáo viên được chọn gồm 1 thầy giáo và 1 cô giáo.
- Câu 259 : Cho tập hợp S = {1,2,3...,17} gồm 17 số nguyên dương đầu tiên. Chọn ngẫu nhiên 3 phần tử của tập S. Tính xác suất để tập hợp con chọn được có tổng các phần tử chia hết cho 3.
A.
B.
C.
D.
- Câu 260 : Gọi S là tập tất cả các số tự nhiên gồm sáu chữ số được tạo thành từ các chữ số 1, 2, 3, 4, trong đó chữ số 1 có mặt đúng 3 lần, các chữ số còn lại mỗi chữ số có mặt đúng một lần. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn không có hai chữ số 1 nào đứng cạnh nhau.
A.
B. 0,3
C. 0,2
D.
- Câu 261 : Có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam và 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện một học sinh nữ.
- Câu 262 : Một hộp chứa 3 bi xanh, 4 bi đỏ và 5 bi vàng có kích thước khác nhau. Chọn ngẫu nhiên từ hộp đó 4 viên bi. Xác suất để 4 viên bi lấy ra có đủ ba màu là
- Câu 263 : Raashan, Sylvia và Ted cùng chơi một trò chơi. Mỗi người bắt đầu với 1$. Chuông reo sau mỗi 15 giây, tại thời điểm đó mỗi người chơi mà đang có tiền sẽ chọn ngẫu nhiên một trong hai người còn lại để đưa 1$ (Ví dụ sau khi chuông reo lần thứ nhất, Raashan và Ted có thể cùng đưa cho Sylvia và Sylvia có thể đưa tiền của cô ấy cho Ted, khi đó Raashan có 0$, Sylvia có 2$ và Ted có 1$. Đến vòng thứ hai, Raashan không có tiền để đưa nhưng Sylvia và Ted có thể chọn đưa cho nhau 1$…). Xác suất để sau 2019 lần chuông reo, mỗi người chơi có 1$ là bao nhiêu?
- Câu 264 : Có 3 quyển sách toán, 4 quyển sách lý và 5 quyển sách hóa khác nhau được sắp xếp ngẫu nhiên lên một giá sách có 3 ngăn, các quyển sách được sắp dựng đứng thành một hàng dọc vào một trong 3 ngăn ( mỗi ngăn đủ rộng để chứa tất cả các quyển sách). Tính xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau.
- Câu 265 : Gọi S là tập tất cả các số tự nhiên có bốn chữ số khác nhau. Chọn ngẫu nhiên một số từ tập S, tính xác suất để số được chọn lớn hơn số 6700.
- Câu 266 : Tại trạm xe buýt có 5 hành khách đang chờ xe đón, trong đó có A và B. Khi đó có 1 chiếc xe ghé trạm để đón khách, biết rằng lúc đó trên xe chỉ còn đúng 5 ghế trống mỗi ghế trống chỉ 1 người ngồi như hình vẽ bên, trong đó các ghế trống được ghi 1;2;3;4;5 như hình vẽ.
- Câu 267 : Gọi S là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số 0;1;2;3;4;5;6;7;8;9. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn thỏa mãn abc
- Câu 268 : Trong một lớp học có hai tổ. Tổ 1 gồm 8 học sinh nam và 7 học sinh nữ. Tổ 2 gồm 5 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên mỗi tổ hai em học sinh. Xác suất để trong bốn em được chọn có 2 nam và 2 nữ bằng
- Câu 269 : Có hai hộp đựng bi, mỗi viên bi chỉ mang một màu trắng hoặc đen. Lấy ngẫu nhiên từ mỗi hộp đúng một viên bi. Biết tổng số bi ở hai hộp là 20 và xác suất để lấy được hai viên bi đen là . Tính xác suất để lấy được hai viên bi trắng.
- Câu 270 : Có 8 người khách bước ngẫu nhiên vào một cửa hàng có 3 quầy. Tính xác suất để 3 người cùng đến quầy thứ nhất.
- Câu 271 : Đoàn trường THPT Nguyễn Đình Liễn tổ chức giao lưu bóng chuyền học sinh giữa các lớp nhân dịp chào mừng ngày 26/3. Sau quá trình đăng kí có 10 đội tham gia thi đấu từ 10 lớp, trong đó có lớp 10A1 và 10A2. Các đội chia làm hai bảng, kí hiệu là bảng A và bảng B, mỗi bảng 5 đội. Việc chia bảng được thực hiện bằng cách bốc thăm ngẫu nhiên. Tính xác suất để 2 đội 10A1 và 10A2 thuộc hai bảng đấu khác nhau.
- Câu 272 : Gieo ngẫu nhiên một con súc sắc 3 lần liên tiếp. Gọi a,b,c lần lượt là số chấm xuất hiện ở 3 lần gieo. Xác suất của biến cố “ số chia hết cho 45” là
- Câu 273 : Sắp ngẫu nhiên 5 học sinh nam và học sinh nữ thành một hàng ngang. Tính xác suất để không có học sinh nữ nào đứng cạnh nhau.
- Câu 274 : Một đoàn tàu gồm ba toa đỗ sân ga. Có 5 hành khách lên tàu. Mỗi hành khách độc lập với nhau. Chọn ngẫu nhiên một toa. Tìm xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu.
- Câu 275 : Một quân vua được đặt ở một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng ( xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên bước. Xác suất để sau bước đi quân vua trở về ô ban đầu là
- Câu 276 : Cho đa giác đều 20 cạnh. Lấy ngẫu nhiên 3 đỉnh của đa giác đều. Xác suất để 3 đỉnh lấy được là 3 đỉnh của một tam giác vuông không có cạnh nào là cạnh của đa giác đều bằng
- Câu 277 : Năm đoạn thẳng có độ dài 1 cm; 3 cm; 5 cm; 7 cm; 9 cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra tạo thành ba cạnh của một tam giác bằng
- Câu 278 : Trong một phòng học, có 36 cái bàn rời nhau được đánh số từ 1 đến 36, mỗi bàn dành cho 1 học sinh. Các bàn được xếp thành một hình vuông có kích thước 6x6. Cô giáo xếp tuỳ ý 36 học sinh của lớp vào các bàn, trong đó có hai bạn A và B. Xác suất để A và B ngồi ở hai bàn xếp cạnh nhau bằng (theo chiều ngang hoặc chiều dọc).
- Câu 279 : Có hai dãy ghế đối diện nhau, mỗi dãy có năm ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam và 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và bất kì hai học sinh ngồi liền kề nhau thì khác phái bằng
- Câu 280 : Xếp 4 người đàn ông, 2 người đàn bà và một đứa trẻ được xếp ngồi vào 7 chiếc ghế đặt quanh một bàn tròn. Xác suất để xếp đứa trẻ ngồi giữa hai người đàn ông là
- Câu 281 : Gọi S là tập hợp các số tự nhiên gồm 9 chữ số được lập từ X = {6;7;8}, trong đó chữ số 6 xuất hiện 2 lần; chữ số 7 xuất hiện 3 lần; chữ số 8 xuất hiện 4 lần. Chọn ngẫu nhiên một số từ tập S. Xác suất để số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6 là
- Câu 282 : Cho một bảng ô vuông 3x3
A. P(A) =
B. P(A) =
C. P(A) =
D. P(A) =
- Câu 283 : Trong kỳ thi Chọn học sinh giỏi tỉnh có em dự thi, có 105 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ ngồi được 1 học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau.
- Câu 284 : Trong mặt phẳng, cho hai tia Ox và Oy vuông góc với nhau tại gốc O. Trên tia Ox lấy 10 điểm và trên tia Oy lấy 10 điểm thỏa mãn (đvd). Chọn ra ngẫu nhiên một tam giác có đỉnh nằm trong 20 điểm . Xác suất để tam giác chọn được có đường tròn ngoại tiếp tiếp xúc với một trong hai trục Ox hoặc Oy là
- Câu 285 : Cho tập A = {0;1;2;3;4;5;6}. Xác suất để lập được số tự nhiên gồm 5 chữ số khác nhau lấy từ các phần tử của tập A sao cho số đó chia hết cho 1,2,3 và các chữ số 1,2,3 luôn có mặt cạnh nhau là
- Câu 286 : Cho tập S = {1;2;3;...;19;20} gồm 20 số tự nhiên từ 1 đến 20. Lấy ngẫu nhiên ba số thuộc S. Xác suất để ba số lấy được lập thành một cấp số cộng là
- Câu 287 : Từ tập hợp tất cả các số tự nhiên có năm chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Xác suất để trong số tự nhiên được lấy ra chỉ có mặt ba chữ số khác nhau là:
- Câu 288 : Có 3 quả cầu màu vàng, 3 quả cầu màu xanh (các quả cầu cùng màu thì giống nhau) bỏ vào hai cái hộp khác nhau, mỗi hộp quả cầu. Tính xác suất để các quả cầu cùng màu thì vào chung một hộp.
- Câu 289 : Có 15 cuốn sách gồm 4 cuốn sách Toán, 5 cuốn sách Lý và 6 cuốn sách Hóa. Các cuốn sách đôi một khác nhau. Thầy giáo chọn ngẫu nhiên 8 cuốn sách để làm phần thưởng cho một học sinh. Tính xác suất để số cuốn sách còn lại của thầy còn đủ 3 môn
- Câu 290 : Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng , trong đó 1abcd9
A. 0,014
B. 0,0495
C. 0,079
D. 0,055
- Câu 291 : Xếp ngẫu nhiên 2 quả cầu xanh, 2 quả cầu đỏ, 2 quả cầu trắng (các quả cầu này đôi một khác nhau) thành một hàng ngang. Tính xác suất để 2 quả cầu màu trắng không xếp cạnh nhau?
A. P =
B. P =
C. P =
D. P =
- Câu 292 : Lập một số tự nhiên có 4 chữ số. Tính xác suất để số đó có chữ số đứng trước không nhỏ hơn chữ số đứng sau.
- Câu 293 : Giải bóng chuyền quốc tế VTV Cup có 8 đội tham gia, trong đó có hai đội Việt Nam. Ban tổ chức bốc thăm ngẫu nhiên để chia thành hai bảng đấu, mỗi bảng 4 đội. Xác suất để hai đội của Việt Nam nằm ở hai bảng khác nhau bằng
- Câu 294 : Giải bóng chuyền quốc tế VTV Cup có 12 đội tham gia, trong đó có 3 đội Việt Nam. Ban tổ chức bốc thăm ngẫu nhiên để chia thành 3 bảng đấu, mỗi bảng 4 đội. Tính xác suất để 3 đội của Việt Nam cùng nằm ở một bảng đấu.
- Câu 295 : Cho tập X = {1;2;3;....;8}. Lập từ X số tự nhiên có 8 chữ số đôi một khác nhau. Xác suất để lập được số chia hết cho 1111 là
- Câu 296 : Cho S là tập tất cả các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 có kết quả gần nhất với số nào trong các số sau
A. 0,014
B. 0,012.
C. 0,128.
D. 0,035.
- Câu 297 : Hai bạn Công và Thành cùng viết ngẫu nhiên ra một số tự nhiên gồm 2 chữ số phân biệt. Xác suất để hai số được viết ra có ít nhất một chữ số chung bằng
- Câu 298 : Gọi S là tập tất cả các số tự nhiên có 4 chữ số đôi một khác nhau được chọn từ các chữ số 1,2,3,4,5,6,7,8,9. Lấy ngẫu nhiên một số thuộc S. Tính xác suất để lấy được một số chia hết cho 11 và tổng 4 chữ số của nó cũng chia hết cho 11.
- Câu 299 : Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên ra từ A hai số. Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.
- Câu 300 : Cho một quân cờ đứng ở vị trí trung tâm của một bàn cờ 9x9 (xem hình vẽ). Biết rằng, mỗi lần di chuyển, quân cờ chỉ di chuyển sang ô có cùng một cạnh với ô đang đứng. Tính xác suất để sau bốn lần di chuyển, quân cờ không trở về đúng vị trí ban đầu.
- Câu 301 : Cho A là tập tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập A, tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1.
- Câu 302 : Cho A là tập tất cả các số tự nhiên có 5 chữ số phân biệt. Chọn ngẫu nhiên một số từ tập tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1.
- Câu 303 : Cho A là tập tất cả các số tự nhiên có 4 chữ số phân biệt được lập từ tập {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ tập A. Xác suất để chọn được một số chia hết cho 11 và tổng bốn chữ số của nó chia hết cho 11 bằng
- Câu 304 : Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các đường thẳng đi qua hai trong số 30 đỉnh đã cho. Chọn 2 đường thẳng bất kỳ thuộc tập (S). Tính xác suất để chọn được 2 đường thẳng mà giao điểm của chúng nằm bên trong đường tròn.
- Câu 305 : Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các đường thẳng đi qua hai trong số 30 đỉnh đã cho. Chọn 2 đường thẳng bất kỳ thuộc tập (S). Tính xác suất để chọn được 2 đường thẳng mà giao điểm của chúng nằm bên trong đường tròn.
- Câu 306 : Cho một đa giác đều có 20 đỉnh nội tiếp trong đường tròn (C). Lấy ngẫu nhiên hai đường chéo trong số các đường chéo của đa giác. Tính xác suất để lấy được hai đường chéo cắt nhau và giao điểm của hai đường chéo trong đường tròn?
- Câu 307 : Nhằm chào mừng ngày thành lập Đoàn TNCS Hồ Chí Minh, Đoàn trường THPT chuyên Lương Thế Vinh đã tổ chức giải bóng đá nam. Có 16 đội đăng kí tham dự trong đó có 3 đội: 10 Toán, 11 Toán, 12 Toán. Ban tổ chức cho bốc thăm ngẫu nhiên để chia đều 16 đội vào 4 bảng để đá vòng loại. Tính xác suất để 3 đội của 3 lớp Toán nằm ở bảng khác nhau.
- Câu 308 : Tung đồng thời 2 con súc sắc cân đối đồng chất. Gọi m là tích của số chấm trên hai con súc sắc trong mỗi lần tung. Tính xác suất để phương trình có hai nghiệm phân biệt.
- Câu 309 : Gọi X là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1;2;3;4;5} và 3 số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ.
- Câu 310 : Trong một buổi dạ hội có 10 thành viên nam và 12 thành viên nữ, trong đó có 2 cặp vợ chồng. Ban tổ chức muốn chọn ra 7 đôi, mỗi đôi gồm 1 nam và 1 nữ để tham gia trò chơi. Tính xác suất để trong 7 đôi đó, có đúng một đôi là cặp vợ chồng. Biết rằng trong trò chơi, người vợ có thể ghép đôi với một người khác chồng mình và người chồng có thể ghép đôi với một người khác vợ mình
- Câu 311 : Chọn ngẫn nhiên ba số tự nhiên trong các số từ 101 đến 200. Tính xác suất để ba số đó lập thành một cấp số cộng có công sai dương.
- Câu 312 : Một nhóm học sinh gồm bốn bạn nam trong đó có bạn Quân và bốn bạn nữ trong đó có bạn Lan. Xếp ngẫu nhiên bốn bạn trên thành một hàng dọc. Xác suất để xếp được hàng dọc thỏa mãn các điều kiện: đầu hàng và cuối hàng đều là nam và giữa hai bạn nam gần nhau có ít nhất một bạn nữ, đồng thời bạn Quân và bạn Lan không đứng cạnh nhau bằng
- Câu 313 : Cho tập hợp (S). Hai bạn A, B mỗi bạn chọn ngẫu nhiên một tập con của (S). Xác suất để tập con của A và B chọn được có đúng 2 phần tử chung gần nhất với kết quả nào dưới đây?
A. 15,08%
B. 29,66%
C. 30,16%
D. 14,83%
- Câu 314 : Cho S là tập tất cả các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 có kết quả gần nhất với số nào trong các số sau
A. 0,014.
B. 0,012.
C. 0,128.
D. 0,035.
- Câu 315 : Cho một đa giác đều 48 đỉnh. Lấy ngẫu nhiên 3 đỉnh của đa giác. Tính xác suất để tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn.
- Câu 316 : Trong chương trình giao lưu gồm có 15 người ngồi vào 15 ghế theo một hàng ngang. Giả sử người dẫn chương trình chọn ngẫu nhiên 3 người trong 15 người để giao lưu với khán giả. Xác suất để trong 3 người được chọn đó không có 2 người ngồi kề nhau là
- Câu 317 : Có hai dãy ghế đối diện nhau, mỗi dãy có 3 ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng:
- Câu 318 : Gọi S là tập hợp các số tự nhiên có chín chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc tập S. Xác suất để số được chọn chia hết cho 3 là
- Câu 319 : Trên đường tròn đặt 24 điểm cách đều nhau sao cho độ dài cung giữa 2 điểm kề nhau đều bằng 1. Chọn ngẫu nhiên 8 trong 24 điểm đó. Tính xác suất sao cho trong 8 điểm được chọn không có 2 điểm nào có độ dài cung bằng 8 hoặc 3.
- Câu 320 : Ông Hùng muốn mở két sắt của mình nhưng ông quên mất mật mã két. Biết rằng mã két gồm 4 chữ số khác 0 và có tổng của 4 chữ số đó bằng 10. Tính xác suất để ông ấy mở được két sắt ở lượt bấm thứ nhất.
- Câu 321 : Hai mươi lăm em học sinh lớp 12A được xếp ngồi vào một vòng tròn trong đêm lửa trại. Ba em học sinh được chọn ( xác suất được lựa chọn đối với mỗi em là như nhau ) và cử tham gia một trò chơi. Xác suất để ít nhất hai trong ba em học sinh được chọn ngồi cạnh nhau là
- Câu 322 : Có 3 quyển sách Văn học khác nhau, 4 quyển sách Toán học khác nhau và 7 quyển sách Tiếng Anh khác nhau được xếp lên một kệ ngang. Tính xác suất để hai cuốn sách cùng môn không ở cạnh nhau
- Câu 323 : Một lớp có 20 học sinh nữ và 25 học sinh nam. Bạn lớp trưởng nữ chọn ngẫu nhiên 4 học sinh khác tham gia một hoạt động của Đoàn trường. Xác suất để 4 học sinh được chọn có cả nam và nữ bằng (làm tròn đến chữ số thập phân thứ 4)
A. 0,0849.
B. 0,8826.
C. 0,8783.
D. 0,0325.
- Câu 324 : Bạn Nam làm bài thi thử THPT Quốc gia môn Toán có 50 câu, mỗi câu có 4 đáp án khác nhau, mỗi câu đúng được 0,2 điểm, mỗi câu làm sai hoặc không làm không được điểm cũng không bị trừ điểm. Bạn Nam đã làm đúng được 40 câu còn 10 câu còn lại bạn chọn ngẫu nhiên mỗi câu một đáp án. Xác suất để bạn Nam được trên điểm gần với số nào nhất trong các số sau?
A. 0,53
B. 0,47
C. 0,25
D. 0,99
- Câu 325 : Một lô hàng gồm 30 sản phẩm trong đó có 20 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu nhiên 3 sản phẩm trong lô hàng. Tính xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt.
- Câu 326 : Một hộp kín chứa 50 quả bóng kích thước bằng nhau, được đánh số từ 1 đến 50. Bốc ngẫu nhiên cùng lúc 2 quả bóng từ hộp trên. Gọi P là xác suất bốc được 2 quả bóng có tích của 2 số ghi trên 2quả bóng là một số chia hết cho 10, khẳng định nào sau đây đúng?
A. 0,3 < P < 0,35
B. 0,2 < P < 0,25
C. 0,25 < P < 0,3
D. 0,35 < P < 0,4
- Câu 327 : Một lô hàng có 20 sản phầm, trong đó có 2 sản phẩm bị lỗi còn lại là sản phẩm tốt. Lấy ngẫu nhiên 4 sản phẩm từ lô hàng đó để kiểm tra. Tính xác suất để trong 4 sản phẩm lấy ra có sản phẩm lỗi.
- Câu 328 : Xếp ngẫu nhiên 5 bạn An, Bình, Cường, Dũng, Đông ngồi vào một dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Xác suất của biến cố “hai bạn An và Bình không ngồi cạnh nhau” là:
- Câu 329 : Một lớp có 20 học sinh nữ và 25 học sinh nam. Bạn lớp trưởng nữ chọn ngẫu nhiên 4 học sinh khác tham gia một hoạt động của Đoàn trường. Xác suất để 4 học sinh được chọn có cả nam và nữ bằng (làm tròn đến chữ số thập phân thứ 4).
A. 0,0849.
B. 0,8826.
C. 0,8783.
D. 0,0325.
- Câu 330 : Gọi X là tập hợp tất cả các số tự nhiên có 8 chữ số được lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Lấy ngẫu nhiên một số trong tập hợp X. Gọi A là biến cố lấy được số có đúng hai chữ số 1, có đúng hai chữ số 2, bốn chữ số còn lại đôi một khác nhau, đồng thời các chữ số giống nhau không đứng liền kề nhau. Xác suất của biến cố A bằng
- Câu 331 : Một hộp chứa 10 quả cầu đỏ được đánh số từ 1 đến 10, 20 quả cầu xanh được đánh số từ 1 đến 20. Lấy ngẫu nhiên một quả. Khi đó xác suất để lấy được quả màu xanh hoặc ghi số lẻ bằng
- Câu 332 : Một hộp chứa 15 quả cầu đỏ được đánh số từ 1 đến 15, 20 quả cầu xanh được đánh số từ 1 đến 20. Lấy ngẫu nhiên đồng thời hai quả. Khi đó xác suất để hai quả cầu lấy được đều màu đỏ hoặc đều ghi số chẵn bằng
- Câu 333 : Trong ngày hội trại xuân, cô giáo chủ nhiệm tổ chức cho một nhóm 30 bạn trong lớp tham gia hai tiết mục văn nghệ là tốp ca và tốp nhảy flashmob. Có 12 bạn tham gia tốp ca, 15 bạn tham gia nhảy flashmob và 6 bạn tham gia cả hai tiết mục. Chọn 1 bạn học sinh bất kì trong lớp, tính xác suất để bạn học sinh này tham gia ít nhất một trong hai tiết mục văn nghệ đã nêu.
- Câu 334 : Tại Giải vô địch bóng đá Đông Nam Á 2018 (AFF Suzuki Cup 2018) có 10 đội tuyển tham dự, trong đó có đội tuyển Việt Nam và đội tuyển Malaysia. Ở vòng bảng, Ban tổ chức chia ngẫu nhiên 10 đội thành 2 bảng, bảng A và bảng B, mỗi bảng có 5 đội. Giả sử khả năng xếp mỗi đội vào mỗi bảng là như nhau. Tính xác suất để đội Việt Nam và đội tuyển Malaysia được xếp trong cùng một bảng.
- Câu 335 : Sắp xếp 5 quyển sách Toán và 4 quyển sách Văn lên một kệ sách dài. Tính xác suất để các quyển sách cùng một môn nằm cạnh nhau.
- Câu 336 : Có 2 học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách sắp xếp như vậy?
A. 108864
B. 80640
C. 145152
D. 217728
- Câu 337 : Trước kì thi học sinh giỏi, nhà trường tổ chức buổi gặp mặt 10 em học sinh trong đội tuyển. Biết các em đó có số thứ tự trong danh sách lập thành cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ được ngồi một học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau.
- Câu 338 : Xếp chỗ cho 6 học sinh trong đó có học sinh A và 3 thầy giáo vào 9 ghế kê thành hàng ngang (mỗi ghế xếp một người). Tính xác suất sao cho mỗi thầy giáo ngồi giữa 2 học sinh và học sinh A ngồi ở một trong hai đầu hàng.
- Câu 339 : Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Người ta muốn xếp chỗ ngồi cho 5học sinh trường X và 5 học sinh trường Y vào bàn nói trên. Tính xác suất để bất cứ hai học sinh nào ngồi đối diện nhau đều khác trường với nhau.
- Câu 340 : Có 4 người xếp thành hàng ngang và mỗi người gieo 1 đồng xu cân đối đồng chất. Xác suất để tồn tại hai người cạnh nhau có cùng kết quả là
- Câu 341 : Một chiếc hộp đựng 5 viên bi trắng, 3 viên bi xanh và 4 viên bi vàng. Lấy ngẫu nhiên 4 viên bi từ hộp đó. Tính xác suất để lấy ra 4 viên bi có đủ ba màu.
- Câu 342 : Lớp 11A có 2 tổ. Tổ I có 5 bạn nam, 3 bạn nữ và tổ II có 4 bạn nam, 4 bạn nữ. Lấy ngẫu nhiên mỗi tổ 2 bạn đi lao động. Tính xác suất để trong các bạn đi lao động có đúng 3 bạn nữ.
- Câu 343 : Một hội nghị gồm 6 đại biểu nước Anh, 7 đại biểu nước Pháp và 7 đại biểu nước Nga, trong đó mỗi nước có 2 đại biểu là nam. Chọn ngẫu nhiên ra 4 đại biểu. Xác suất chọn được 4 đại biểu để trong đó mỗi nước đều có ít nhất một đại biểu và có cả đại biểu nam và đại biểu nữ bằng
- Câu 344 : Đội thanh niên xung kích của một trường THPT gồm 15 học sinh trong đó có 4 học sinh khối 12, 5 học sinh khối 11 và 6 học sinh khối 10. Chọn ngẫu nhiên ra 6 học sinh đi làm nhiệm vụ. Tính xác suất để chọn được 6 học sinh đủ 3 khối.
- Câu 345 : Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 8 học sinh, gồm 4 nam và 4 nữ, ngồi vào hai dãy ghế sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau bằng
- Câu 346 : Đội tuyển học sinh giỏi Toán 12 của trường THPT X có 7 học sinh trong đó có bạn Minh Anh. Lực học của các học sinh là như nhau. Nhà trường chọn ngẫu nhiên 4 học sinh đi thi. Tìm xác suất để Minh Anh được chọn đi thi.
- Câu 347 : Trong Lễ tổng kết Tháng thanh niên, có 10 đoàn viên xuất sắc gồm 5 nam và 5 nữ được tuyên dương khen thưởng. Các đoàn viên này được sắp xếp ngẫu nhiên thành một hàng ngang trên sân khấu để nhận giấy khen. Tính xác suất để trong hàng ngang trên không có bất kì bạn nữ nào đứng cạnh nhau.
- Câu 348 : Có 4 quyển sách Toán, 6 quyển sách Lý và 8 quyển sách Hóa khác nhau được xếp lên giá sách theo một hàng ngang. Tính xác suất để không có bất kỳ hai quyển sách Hóa đứng cạnh nhau.
- Câu 349 : Người ta sắp xếp ngẫu nhiên 5 viên bi được đánh số từ 1 đến 5 vào năm chiếc hộp theo một hàng ngang. Tính xác suất để các viên bi được đánh số chẵn luôn đứng cạnh nhau.
- Câu 350 : Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp A, 3 học sinh lớp B và 5 học sinh lớp C thành một hàng ngang. Xác suất để không có học sinh lớp B nào xếp giữa hai học sinh lớp A bằng
- Câu 351 : Có 3 quyển sách toán, 4 quyển sách lí và 5 quyển sách hóa khác nhau được sắp xếp ngẫu nhiên lên một giá sách gồm có 3 ngăn, các quyển sách được sắp dựng đứng thành một hàng dọc vào một trong ba ngăn (mỗi ngăn đủ rộng để chứa tất cả quyển sách). Tính xác suất để không có bất kì hai quyển sách toán nào đứng cạnh nhau.
- Câu 352 : Hai bạn Công và Thành cùng viết ngẫu nhiên ra một số tự nhiên gồm hai chữ số phân biệt. Xác suất để hai số được viết ra có ít nhất một chữ số chung bằng?
- Câu 353 : Cho tập hợp 1;2;3;4;5;6. Chọn ngẫu nhiên 3 số từ tập S. Tính xác suất để 3 số được chọn lập thành một cấp số cộng.
- Câu 354 : Từ các số 1;2;3;4;5;6 lập được bao nhiêu số tự nhiên gồm tám chữ số sao cho trong mỗi số đó có đúng ba chữ số 1, các chữ số còn lại đôi một khác nhau và hai chữ số chẵn không đứng cạnh nhau?
A. 2612
B. 2400
C. 1376
D. 2530
- Câu 355 : Một hội nghị gồm 6 đại biểu đến từ Việt Nam, 7 đại biểu đến từ Mỹ, 7 đại biểu đến từ Anh, trong đó mỗi Quốc gia có đúng 2 đại biểu nữ. Chọn ngẫu nhiên ra 4 đại biểu. Tính xác suất để chọn được 4 đại biểu sao cho mỗi Quốc gia đều có ít nhất 1 đại biểu và có cả đại biểu nam và nữ.
- Câu 356 : Xếp ngẫu nhiên tám học sinh gồm bốn học sinh nam (trong đó có Hoàng và Nam) cùng bốn học sinh nữ (trong đó có Lan) thành một hàng ngang. Xác suất để trong tám học sinh trên không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam là
- Câu 357 : Có 60 quả cầu được đánh số từ 1 đến 60. Lấy ngẫu nhiên đồng thời hai quả cầu rồi nhân các số trên hai quả cầu với nhau. Tính xác suất để tích nhận được là số chia hết cho 10.
- Câu 358 : Một nhóm gồm 3 học sinh lớp 10, 3 học sinh lớp 11 và 3 học sinh lớp 12 được xếp ngồi vào một hàng có 9 ghế, mỗi học sinh ngồi 1 ghế. Tính xác suất để 3 học sinh lớp 10 không ngồi 3 ghế liền nhau.
- Câu 359 : Một nhóm có 8 học sinh gồm 4 bạn nam và 4 bạn nữ trong đó có 1 cặp sinh đôi gồm 1 nam và 1 nữ. Xếp ngẫu nhiên 8 học sinh này vào 2 dãy ghế đối diện, mỗi dãy 4 ghế, sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để cặp sinh đôi ngồi cạnh nhau và nam nữ không ngồi đối diện nhau bằng
- Câu 360 : Từ các chữ số 1; 2; 3; 4; 5; 6 ta lập các số tự nhiên có 6 chữ số khác nhau. Gọi A là biến cố: “Lập được số mà tổng của ba chữ số thuộc hàng đơn vị, chục, trăm lớn hơn tổng của ba chữ số còn lại là 3 đơn vị”. Xác suất của biến cố A là:
- Câu 361 : Mỗi bạn An và Bình chọn ngẫu nhiên ba số trong tập {0,1,2,3,4,5,6,7,8,9}. Tính xác suất để trong hai bộ ba số của An và Bình chọn ra có nhiều nhất một số giống nhau bằng:
- Câu 362 : Cho E là tập các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các số 0; 1; 2; 3; 4; 5; 6. Tính xác suất để chọn ngẫu nhiên từ E được một số có dạng sao cho a + b + c + d = e + f
- Câu 363 : Gọi A là tập các số tự nhiên gồm 5 chữ số mà các chữ số đều khác 0. Lấy ngẫu nhiên từ tập A một số. Tính xác suất để lấy được số mà chỉ có đúng 3 chữ số khác nhau.
- Câu 364 : Chọn ngẫu nhiên một số từ tập hợp tất cả các số tự nhiên gồm bốn chữ số phân biệt được lấy từ các chữ số 0,1,2,3,4,8,9. Tính xác suất để số được chọn lớn hơn số 2019 và bé hơn số 9102.
- Câu 365 : Gọi là tập hợp các số tự nhiên có 5 chữ số. Lấy ngẫu nhiên hai số từ tập X. Xác suất để nhận được ít nhất một số chia hết cho 4 gần nhất với số nào dưới đây?
A. 0,23
B. 0,44
C. 0,56
D. 0,12
- Câu 366 : Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho. Chọn tam giác trong tập hợp X. Xác suất để tam giác được chọn là tam giác cân bằng
- Câu 367 : Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 4 đỉnh trong các đỉnh của đa giác. Tính xác suất để 4 đỉnh lấy được tạo thành tứ giác có 2 góc ở 2 đỉnh kề chung một cạnh của tứ giác là 2 góc tù.
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau