Bài 148 trang 57 SGK Toán 6 tập 1
Đề bài
Đội văn nghệ của một trường có \(48\) nam và \(72\) nữ về một huyện để biểu diễn. Muốn phục vụ đồng thời tại nhiều địa điểm, đội dự định chia thành các tổ gồm cả nam và nữ, số nam được chia đều vào các tổ, số nữ cũng vậy. Có thể chia được nhiều nhất thành bao nhiêu tổ ?
Khi đó mỗi tổ có bao nhiêu nam, bao nhiêu nữ ?
Hướng dẫn giải
Số tổ chính là ƯCLN của 48 và 72.
Muốn tìm ƯCLN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước như sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung.
Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm
Lời giải chi tiết
Theo đề bài số nam và số nữ phải được chia đều vào các tổ do đó số nam phải là ước của \(48\), số nữ phải là ước của \(72\)
Mỗi tổ phải bao gồm cả nam và nữ do đó số tổ được chia là ước chung của \(48\) và \(72\). Do đó để số tổ chia được nhiều nhất thì số tổ được chia phải là \(ƯCLN (48, 72)\)
Ta có:
\(48 = 2^4. 3\);
\(72 = 2^3. 3^2\)
\(ƯCLN (48, 72) = 2^3. 3 = 24\).
Vậy số tổ là \(24\). Mỗi tổ có \(48: 24 =2\) nam và \(72: 24 = 3\) nữ.