Đề kiểm 15 phút - Đề số 4 - Bài 10 - Chương 1 - Đại số 6
Đề bài
Bài 1. Chứng tỏ rằng:
Nếu \(\overline {abc} + \overline {def} \) chia hết cho 37 thì \(\overline {abcdef} \) chia hết cho 37.
Bài 2. Tìm chữ số x sao cho:
\(18 + 27 + \overline {1x9} \) chia hết cho 9
Hướng dẫn giải
Bài 1. Ta có:
\(\eqalign{\overline {abcdef} &= (100000a + 10000b + 1000c) + (100d + 10e + f) \cr & = 1000(100a + 10b + c) + (100d + 10e + f) \cr & = 1000\overline {abc} + \overline {def} \cr & = 999\overline {abc} + \overline {abc} + \overline {def} \cr} \)
Theo giả thiết, ta có:
\(\eqalign{ & \left\{ \matrix{ (\overline {abc} + \overline {def} ) \vdots\; 37 \hfill \cr 999 = 37.27 \hfill \cr} \right. \cr & \Rightarrow 999 \vdots\; 37 \cr & \Rightarrow 999.\overline {abc} \vdots\; 37 \cr} \)
Vậy \(\overline {abcdef} \) chia hết cho 37
Bài 2. Ta thấy:
\(18 ⋮\; 9; 27 ⋮\; 9\)
Muốn cho (\(18 + 27 + \overline {1x9} \)) ⋮ 9 , ta cho: \(\overline {1x9} \vdots \;9\)
Trong các số từ 109, 119, ...199 ta chỉ tìm được số \(189 ⋮\; 9.\)
Vậy \(x = 8\).