Bài 14 trang 48 SGK Toán 9 tập 1
Đề bài
Cho hàm số bậc nhất \(y = (1 - \sqrt{5}) x - 1\).
a) Hàm số trên là đồng biến hay nghịch biến trên \(\mathbb{R}\) ? Vì sao ?
b) Tính giá trị của \(y\) khi \(x = 1 + \sqrt{5}\);
c) Tính giá trị của \(x\) khi \(y=\sqrt{5}\).
Hướng dẫn giải
a) +) Hàm số bậc nhất \(y=ax+b\) xác định với mọi giá trị của \(x\) trên \(\mathbb{R}\)
- Đồng biến trên \(\mathbb{R}\) khi \( a > 0\).
- Nghịch biến trên \(\mathbb{R}\) khi \(a < 0\).
+) Sử dụng định lí so sánh hai căn bậc hai số học của hai số không âm:
\(a < b \Leftrightarrow \sqrt a < \sqrt b,\) với \(a,\ b \ge 0\).
b) +) Thay \(x_0\) vào công thức hàm số \(y=ax+b\) tính được giá trị của hàm số: \(y_0=ax_0+b\).
+) Sử dụng hằng đẳng thức: \( a^2-b^2=(a-b)(a+b).\)
c) +) Thay \(x_0\) vào công thức hàm số \(y=ax+b\) tính được giá trị của hàm số: \(y_0=ax_0+b\).
+) Sử dụng hằng đẳng thức:
\( (a+b)^2=a^2+2ab+b^2\).
\( a^2-b^2=(a-b)(a+b).\)
+) Sử dụng công thức trục căn thức ở mẫu:
\(\dfrac{C}{\sqrt A \pm B}=\dfrac{C(\sqrt A \mp B)}{A - B^2}\)
Lời giải chi tiết
a) Ta có:
\(1 < 5 \Leftrightarrow \sqrt 1<\sqrt{5}\)
\(\Leftrightarrow 1<\sqrt{5}\)
\(\Leftrightarrow 1-\sqrt{5}<0\)
Vậy hàm số \(y = (1 - \sqrt{5}) x - 1\) nghịch biến trên \(\mathbb{R}\) (vì hệ số \(a\) âm).
b)
Thay \(x = 1 + \sqrt{5}\) vào công thức của hàm số đã cho, ta được:
\( y=(1-\sqrt{5})(1+\sqrt{5})-1\)
\(\Leftrightarrow y= [1^2 -(\sqrt 5)^2]-1\)
\(\Leftrightarrow y= (1-5)-1\)
\(\Leftrightarrow y= -4-1\)
\(\Leftrightarrow y= -5\)
Vậy \(x = 1 + \sqrt{5}\) thì \(y= -5\).
c) Ta có:
Thay \(y=\sqrt{5}\) vào công thức của hàm số, ta được:
\(\sqrt{5}=(1-\sqrt{5})x-1 \)
\(\Leftrightarrow (1-\sqrt 5)x=\sqrt 5 +1\)
\(\Leftrightarrow x=\dfrac{\sqrt 5 +1}{1-\sqrt 5}\)
\(\Leftrightarrow x=\dfrac{(\sqrt 5 +1)(\sqrt 5 +1)}{(1-\sqrt 5)(\sqrt 5 +1)}\)
\(\Leftrightarrow x = \dfrac{(\sqrt 5 +1)^2}{(\sqrt 5)^2-1^2}\)
\(\Leftrightarrow x = \dfrac{(\sqrt 5)^2+2\sqrt 5 +1}{5-1}\)
\(\Leftrightarrow x = \dfrac{ 5+2\sqrt 5 +1}{4}\)
\(\Leftrightarrow x = \dfrac{ 6+2\sqrt 5 }{4}\)
\(\Leftrightarrow x = \dfrac{ 2(3+\sqrt 5)}{2.2}\)
\(\Leftrightarrow x = \dfrac{ 3+\sqrt 5 }{2}\)
Vậy \(y=\sqrt 5\) thì \(x=\dfrac{3+\sqrt 5}{2}\).