Giải bài 31 trang 40 - Sách giáo khoa Toán 7 tập 2
Đề bài
Cho hai đa thức:
M = 3xyz – 3x\(^2\) + 5xy – 1
N = 5x\(^2\) + xyz – 5xy + 3 – y.
Tính M + N; M – N; N – M.
Hướng dẫn giải
M + N = \((3xyz-3x^2+5xy-1)+(5x^2+xyz-5xy+3-y)\)
= \(3xyz -3x^2+5xy-1+5x^2+xyz-5xy+3-y\)
= \((3xyz+xyz)+(-3x^2+5x^2)+(5xy-5xy)-y+(-1+3)\)
= \(4xyz+2x^2-y+2\)
M - N = \((3xyz-3x^2+5xy-1)-(5x^2+xyz-5xy+3-y)\)
= \(3xyz -3x^2+5xy-1-5x^2-xyz+5xy-3+y\)
= \((3xyz-xyz)+(-3x^2-5x^2)+(5xy+5xy)+y+(-1-3)\)
= \(2xyz-8x^2+10xy+y-4\)
N - M = \((5x^2+xyz-5xy+3-y)-(3xyz-3x^2+5xy-1)\)
= \(5x^2+xyz-5xy+3-y-3xyz+3x^2-5xy+1\)
= \((5x^2+3x^2)+(xyz-3xyz)+(-5xy-5xy)-y+(3+1)\)
= \(8x^2-2xyz-10xy-y+4\)