Đề kiểm tra 15 phút - Đề số 3 - Bài 8 - Chương 4 – Đại số 7
Đề bài
Bài 1: Cho \(A(x) = {x^3} + 2{{\rm{x}}^2} - 4{\rm{x}} - 4;\)\(\;B(x) = {x^3} + {x^2} - 6{\rm{x}} - 4\).
Tính \(A(x) + B(x)\) và \(A(x) - B(x)\).
Bài 2: Cho \(P(x) = 2{x^4} - 2{x^3} - x + 1\). Tìm Q(x) biết:
\(P(x) + Q(x) = 2{{\rm{x}}^4} - 3{{\rm{x}}^3} + 5{{\rm{x}}^2} + 3{\rm{x}} + 1\).
Bài 3: Cho \(K(x) = 2{{\rm{x}}^2} + 3{\rm{x}} - 5;\)\(\;L(x) = {x^2} + x - 1;\)\(\;M(x) = - 4{{\rm{x}}^2} + 2{\rm{x}} - 3\). Tính \(K(x) - L(x) + M(x)\).
Hướng dẫn giải
Bài 1:
\(A(x) + B(x) = {x^3} + 2{{\rm{x}}^2} - 4{\rm{x}} - 4 + {x^3} + {x^2} - 6{\rm{x}} - 4 \)\(\;= 2{{\rm{x}}^3} + 3{{\rm{x}}^2} - 10{\rm{x}} - 8.\)
\(\eqalign{ A(x) - B(x) &= ({x^3} + 2{{\rm{x}}^2} - 4{\rm{x}} - 4) - ({x^3} + {x^2} - 6{\rm{x}} - 4) \cr & = {x^3} + 2{{\rm{x}}^2} - 4{\rm{x}} - 4 - {x^3} - {x^2} + 6{\rm{x + }}4 \cr & = {x^2} + 2{\rm{x}}. \cr} \)
Bài 2: Ta có: \(2{x^4} - 2{x^3} - x + 1 + Q(x) = 2{{\rm{x}}^4} - 3{{\rm{x}}^3} + 5{{\rm{x}}^2} + 3{\rm{x}} + 1.\)
\(\eqalign{ \Rightarrow Q(x) &= 2{{\rm{x}}^4} - 3{{\rm{x}}^3} + 5{{\rm{x}}^2} + 3{\rm{x}} + 1 - (2{x^4} - 2{x^3} - x + 1) \cr & {\rm{ }} = 2{{\rm{x}}^4} - 3{{\rm{x}}^3} + 5{{\rm{x}}^2} + 3{\rm{x}} + 1 - 2{x^4} + 2{x^3} + x - 1 \cr & {\rm{ }} = - {{\rm{x}}^3} + 5{{\rm{x}}^2} + 4x. \cr} \)
Bài 3: Ta có:
\(\eqalign{ K(x) - L(x) + M(x) &= (2{{\rm{x}}^2} + 3{\rm{x}} - 5) - ({x^2} + x - 1) + ( - 4{{\rm{x}}^2} + 2{\rm{x}} - 3) \cr & = 2{{\rm{x}}^2} + 3{\rm{x}} - 5 - {x^2} - x + 1 - 4{{\rm{x}}^2} + 2{\rm{x}} - 3 \cr & = - 3{{\rm{x}}^2} + 4{\rm{x}} - 7. \cr} \)