Đăng ký

Đề kiểm 15 phút - Đề số 5 - Bài 1 - Chương 4 - Đại số 9

Đề bài

Cho hàm số \(y = {1 \over 2}{x^2}.\)

a) Vẽ đồ thị (P) của hàm số.

b) Tìm trên (P) những điểm cách đều hai trục tọa độ ( không trùng với O).

c) Tìm trên (P) những điểm có tung độ bằng \({9 \over 2}.\)

Hướng dẫn giải

a)   Bảng giá trị :

x

− 2

− 1

0

1

2

y

2

\({1 \over 2}\)

0

\({1 \over 2}\)

2

x

− 2

− 1

0

1

2

y

2

\({1 \over 2}\)

0

\({1 \over 2}\)

2

Đồ thị của hàm số là parabol (P).

b)   Những điểm cách đều hai trục tọa độ nằm trên hai đường phân giác : \(y = x\) hoặc \(y = − x.\)

Xét phương trình : \({1 \over 2}{x^2} = x \Leftrightarrow {x^2} - 2x = 0\)

\(\Leftrightarrow x\left( {x - 2} \right) = 0 \Leftrightarrow \left[ \matrix{  x = 0 \hfill \cr  x = 2 \hfill \cr}  \right.\)

Ta có hai điểm : \(O(0; 0), M(2; 2).\) Tương tự, ta có : \(N(− 2; 2).\)

Vậy có 2 điểm trên (P), không trùng với O là \(M(2; 2)\) và \(N(− 2; 2).\)

c)   Gọi \(A\left( {{x_0};{9 \over 2}} \right)\in (P)\) \( \Rightarrow {9 \over 2} = {1 \over 2}x_0^2 \Rightarrow x_0^2 = 9 \)\(\;\Rightarrow \left| {{x_0}} \right| = 3 \Rightarrow {x_0} =  \pm 3.\)

Ta có hai điểm : \({A_{_1}}\left( {3;{9 \over 2}} \right)\) và \({A_2}\left( { - 3;{9 \over 2}} \right).\)