Đăng ký

Đề kiểm 15 phút - Đề số 2 - Bài 1 - Chương 4 - Đại số 9

Đề bài

Bài 1: Cho hàm số \(y = f\left( x \right) = {x^2}.\)

a) Vẽ đồ thị của hàm số.

b) Tìm giá trị lớn nhất, nhỏ nhất của hàm số khi x thỏa mãn \(0 \le x \le 2.\)

Bài 2: Tìm giá trị của m, biết rằng hàm số \(y = \left( {1 - m} \right){x^2}\) đồng biến khi \(x > 0.\)

Bài 3: Cho hàm số \(y = \left( {m - 1} \right){x^2}\). Tìm giá trị của m biết đồ thị (P) của hàm số đi qua điểm \(A(2; − 4).\)

Hướng dẫn giải

Bài 1: a) Bảng giá trị :

x

− 2

− 1

0

1

2

y

4

1

0

1

4

x

− 2

− 1

0

1

2

y

4

1

0

1

4

Đồ thị của hàm số là một parabol có đỉnh là O và nhận trục Oy làm trục đối xứng.

b) Ta có \(a = 1 > 0\) nên hàm số đồng biến khi \(x > 0.\)

Vậy \(0 \le x \le 2 \Rightarrow f\left( 0 \right) \le f\left( x \right) \le f\left( 2 \right)\)\(\; \Rightarrow 0 \le {x^2} \le 4.\)

Vậy giá trị nhỏ nhất của hàm số bằng 0, khi \(x = 0\); giá trị lớn nhất của hàm số bằng 4, khi \(x = 2.\)

Bài 2: Hàm số đồng biến khi \(x > 0  \Leftrightarrow  1 – m > 0  \Leftrightarrow  m < 1.\)

Bài 3: Ta có \(A \in (P)  \Rightarrow  - 4 = \left( {m - 1} \right){.2^2} \)

\(\;\Rightarrow m - 1 =  - 1 \Rightarrow m = 0.\)