Bài 6 trang 28 SGK Hình học 12
Đề bài
Cho hình chóp \(S.ABC\). Gọi \(A'\) và \(B'\) lần lượt là trung điểm của \(SA\) và \(SB\). Khi đó tỉ số thể tích của hai khối chóp \(S.A'B'C'\) và \(S.ABC\) bằng:
(A) \({1 \over 2}\) (B) \({1 \over 3}\) (C) \({1 \over 4}\) (D) \({1 \over 8}\)
Hướng dẫn giải
Sử dụng kết quả sau:
Cho khối chóp S.ABC, trên các cạnh SA, SB, SC lấy các điểm A', B', C'. Khi đó ta có: \[\frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}}\]
Lưu ý công thức trên chỉ được phép dùng đối với chóp tam giác, khi không là chóp tam giác phải sử dụng phân chia và lắp ghép các khối đa diện trước khi sử dụng công thức.
Lời giải chi tiết
Ta có: \({{{V_{S.A'B'C}}} \over {{V_{S.ABC}}}} = {{SA'} \over {SA}}.{{SB'} \over {SB}}.{{SC} \over {SC}} = {1 \over 2}.{1 \over 2}.1 = {1 \over 4}\)
Chọn (C).