Bài 3 trang 91 SGK Hình học 11
Đề bài
Cho hình bình hành \(ABCD\). Gọi \(S\) là một điểm nằm ngoài mặt phẳng chứa hình bình hành. chứng minh rằng: \(\overrightarrow{SA}\) + \(\overrightarrow{SC}\) = \(\overrightarrow{SB}\) + \(\overrightarrow{SD}\).
Hướng dẫn giải
Sử dụng công thức: \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} \), với \(M\) là một điểm nằm ngoài \(AB\) và \(I\) là trung điểm của \(AB\).
Lời giải chi tiết
Gọi \(O\) là tâm của hình bình hành \(ABCD\), ta có \(O\) là trung điểm của \(AC\) và \(BD\). Khi đó:
\(\left\{ \matrix{\overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} \hfill \cr \overrightarrow {SB} + \overrightarrow {SD} = 2\overrightarrow {SO} \hfill \cr} \right.\)\( \Rightarrow\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD}\,\,\left( {dpcm} \right)\)