Đăng ký

Bài 19 trang 52 SGK Toán 9 tập 1

Đề bài

Đồ thị của hàm số \(y = \sqrt 3 x + \sqrt 3 \) được vẽ bằng compa và thước thẳng.

Hãy tìm hiểu cách vẽ đó rồi nêu lại các bước thực hiện.

Áp dụng: Vẽ đồ thị của hàm số \(y = \sqrt 5 x + \sqrt 5 \) bằng compa và thước thẳng.

Hướng dẫn. Tìm điểm trên trục tung có tung độ bằng \(\sqrt 5 \). 

Hướng dẫn giải

+) Xác định hai điểm thuộc đồ thị hàm số \(y=ax+b(a \ne 0)\):

   Cho \(x=0 \Rightarrow y=b \Rightarrow A(0; b).\)

   Cho \(y=0 \Rightarrow x = -\dfrac{b}{a} \Rightarrow B {\left(-\dfrac{b}{a} \right)}.\)

Xác định vị trí hai điểm \(A,\ B\) trên mặt phẳng tọa độ. Đường thẳng đi qua \(A,\ B\) là đồ thị hàm số \(y=ax+b\)

+) Định lí Py-ta-go trong tam giác vuông: Cho tam giác \(ABC\) vuông tại \(A\). Khi đó:

              \(BC^2=AB^2+AC^2\).

Lời giải chi tiết

+ Vẽ đồ thì hàm số: \(y=\sqrt 3 x + \sqrt 3\)

    Cho \(x= 0 \Rightarrow y = \sqrt 3 . 0 + \sqrt 3 = \sqrt 3 \Rightarrow M(0; \sqrt 3)\).

    Cho \(y=0  \Rightarrow 0 = \sqrt 3 . x + \sqrt 3 \Rightarrow x= -1 \Rightarrow N(-1; 0)\).

Đồ thị hàm số \(y=\sqrt 3 x + \sqrt 3\) là đường thẳng đi qua hai điểm \(M(0; \sqrt 3)\) và \(N(-1; 0)\)

+ Ta đi xác định vị trí điểm \(M(0; \sqrt 3)\) trên trục tung:

Bước \(1\): Xác định điểm \(A(1; 1)\) trên mặt phẳng tọa độ \(Oxy\). Khi đó theo định lí Py-ta-go, ta có:

             \(OA^2=1^2+1^2=2 \Leftrightarrow OA =\sqrt 2\)

Bước \(2\): Dùng compa vẽ cung tròn tâm \(O\) bán kính \(OA =\sqrt 2\). Cung tròn này cắt trục \(Ox\) tại vị trí \(C\) thì hoành độ của \(C\) là \(\sqrt 2\).

Bước \(3\): Xác định điểm \(B( \sqrt 2; 1)\). Khi đó theo định lí Py-ta-go, ta có:

            \(OB^2=(\sqrt 2)^2+1^2=2=1=3 \Leftrightarrow OB =\sqrt 3\)

Bước \(4\): Dùng compa vẽ cung tròn tâm \(O\) bán kính \(OB=\sqrt 3\). Khi đó cung tròn này cắt trục tung tại vị trí điểm có tung độ là \(\sqrt 3\). Ta xác định được điểm \(M(0; \sqrt 3)\).

Bước \(5\): Kẻ đường thẳng đi qua hai điểm \(M\) và \(N\) ta được đồ thị hàm số \(y=\sqrt 3 x + \sqrt 3\).

+ Áp dụng: Vẽ đồ thị hàm số \(y = \sqrt 5 x + \sqrt 5 \) (làm tương tự như trên)

    Cho \(x= 0 \Rightarrow y = \sqrt 5 . 0 + \sqrt 5 = \sqrt 5 \Rightarrow B(0; \sqrt 5)\).

    Cho \(x= -1 \Rightarrow y = \sqrt 5 . (-1) + \sqrt 5 = 0 \Rightarrow C(-1; 0)\).

Bước \(1\): Xác định điểm \(A(2; 1)\) trên mặt phẳng tọa độ \(Oxy\).

           Áp dụng định lí Py-ta-go, ta có:

             \(OA^2=2^2+1^2=4+1=5 \Leftrightarrow OA = \sqrt 5\)

Bước \(2\): Vẽ cung tròn tâm \(O\) bán kính \(OA=\sqrt 5\). Cung tròn này cắt trục \(Oy\) tại vị trí điểm \(B\) có tung độ là \(\sqrt 5\). Ta xác định được điểm \(B\).

Bước \(3\): Kẻ đường thẳng đi qua hai điểm \(B(0; \sqrt 5)\) và \(C(-1; 0)\) ta được đồ thị của hàm số \(y = \sqrt 5 x + \sqrt 5 \).