Đăng ký

Đề kiểm tra 15 phút - Đề số 2 - Bài 3 - Chương 2 - Đại số 9

Đề bài

Bài 1. Cho hàm số \(y = ax + b \;(a ≠ 0)\)

Tìm a, b biết rằng đồ thị của hàm số là đường thẳng song song với đường thẳng \(y = \sqrt 3 x\) và qua điểm \(A(1; 2)\).

Bài 2. Tìm \(m\) để đồ thị của hàm số \(y = (2m – 1)x – m\) cắt trục hoành tại điểm có hoành độ bằng \(1\).

Bài 3. Vẽ đồ thị hàm số \(y = \sqrt 2 x + 2\)

Điểm \(M\left( {1 - \sqrt 2 ;\sqrt 2  - 1} \right)\) có thuộc đồ thị hay không? Tại sao?

Hướng dẫn giải

Bài 1. Từ giả thiết, ta có \(a = \sqrt 3 \)

Khi đó phương trình đường thẳng có dạng : \(y = \sqrt 3 x + b\,\left( d \right)\)

\(A \in \left( d \right) \Rightarrow 2 = \sqrt 3 .1 + b \)\(\;\Rightarrow b = 2 - \sqrt 3 \)

Vậy \(a = \sqrt 3 ;b = 2 - \sqrt 3 \)

Bài 2. Tọa độ của điểm A trên trục hoành có hoành độ bằng 1 là \(A(1; 0)\). Điểm A thuộc đồ thị nên :\(0 = \left( {2m - 1} \right).1 - m \Rightarrow m = 1\)

Bài 3. Bảng giá trị:

x

0

\( - \sqrt 2 \)

y

2

0

x

0

\( - \sqrt 2 \)

y

2

0

Đồ thị của hàm số là đường thẳng đi qua hai điểm \(A(0; 2)\) và \(B\left( { - \sqrt 2 ;0} \right)\)

Thế tọa độ \(M\left( {1 - \sqrt 2 ;\sqrt 2  - 1} \right)\) vào phương trình \(y = \sqrt 2 x + 2,\) ta có:

\(\eqalign{  & \sqrt 2  - 1 = \sqrt 2 \left( {1 - \sqrt 2 } \right) + 2  \cr  &  \Leftrightarrow \sqrt 2  - 1 = \sqrt 2  - 2 + 2\,\left( \text{Vô lí} \right) \cr} \)

Vậy M không thuộc đồ thị.