Bài 1 trang 107 SGK Toán 7 tập 1
Đề bài
Tính số đo \(x\) và \(y\) ở các hình 47.48.49,50,51:
Hướng dẫn giải
Áp dụng định lý tổng ba góc trong một tam giác.
Lời giải chi tiết
Hình 47)
Theo định lí tổng ba góc trong một tam giác ta được:
\(x + {{90}^0} + {{55}^{0}} = {{180}^0}\)
\(\Rightarrow x = {{180}^0} - \left( {{{90}^0} + {{55}^0}} \right) = {{35}^0}\)
Hình 48)
Theo định lí tổng ba góc trong một tam giác ta được:
\(x + {\rm{ }}{{40}^0} + {\rm{ }}{{30}^0} = {\rm{ }}{{180}^0}\)
\(= > {\rm{ }}x = {\rm{ }}{{180}^0}{\rm{ - }}\left( {{\rm{ }}{{40}^0} + {\rm{ }}{{30}^0}} \right) = {\rm{ }}{{110}^0}\)
Hình 49)
Theo định lí tổng ba góc trong một tam giác ta được:
\(x + {\rm{ }}x + {\rm{ }}{{50}^0} = 180^0\)
\( \Rightarrow {\rm{ }}2x = {\rm{ }}{{180}^0} - {{50}^0} = {{130}^0}\)
\(x = {65}^0\)
Hình 50)
Vì \(y\) là góc ngoài tam giác tại đỉnh \(D\) nên ta có:
\(y = {\rm{ }}{60^0} + {\rm{ }}{40^0} = {\rm{ }}{100^0}\)
Hai góc \(x\) và \(\widehat{DKE}\) là hai góc kề bù nên:
\(x + {{40}^0} ={180}^{0}\)
\(x = {{180}^0} - {{40}^{0}} = 140^0\)
Hình 51)
Áp dụng định lí tổng ba góc trong một tam giác vào \(\Delta ABC\) ta có:
\(\widehat A + \widehat B + \widehat C=180^0\)
\(({40^0} + {\rm{ }}{40^0}){\rm{ }} + {\rm{ }}{70^0} + {\rm{ }}y{\rm{ }} = {180^0}\)
\(y+ 150^0 =180^0\)
\(y = {180^{0}} - {\rm{ }}{150^0} = {\rm{ }}{30^{0}}\)
Áp dụng định lí tổng ba góc trong một tam giác vào \(\Delta ACD\) ta có:
\(x + {\rm{ }}{40^0} + {\rm{ }}{30^0} = {\rm{ }}{180^0}\)
\(x = {\rm{ }}{180^0} - ({\rm{ }}{40^0} + {\rm{ 3}}{0^0}) = {\rm{ }}{110^0}\)