Tuyển tập Bài tập Hình học không gian ôn thi THPT...
- Câu 1 : Với một tấm bìa hình vuông, người ta cắt bỏ ở mỗi góc tấm bìa một hình vuông cạnh 12cm rồi gấp lại thành một hình hộp chữ nhật không có nắp. Khi dung tích của cái hộp đó là , tính độ dài cạnh của tấm bìa
A. 42 cm
B. 36 cm
C. 44 cm
D. 38 cm
- Câu 2 : Cho ABC vuông tại A có AB = 3, AC = 4. Quay tam giác quanh AB ta được hình nón tròn xoay có diện tích xung quanh và quay tam giác quanh AC ta thu được hình nón xoay có diện tích xung quanh . Tính tỉ số
A.
B.
C.
D.
- Câu 3 : Cho tứ diện đều SABC cạnh a. Tỉ số thể tích của hai hình nón cùng đỉnh S, đáy lần lượt là hai đường tròn nội tiếp và ngoại tiếp tam giác ABC là
A.
B.
C.
D. Tỉ số khác
- Câu 4 : Cho lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng ; cạnh AB = a. Tính thể tích khối đa diện ABCC'B'
A.
B.
C.
D.
- Câu 5 : Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, và AA' = . Hình chiếu vuông góc của A' lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A'B'C'D'
A. V = 12
B. V = 3
C. V = 9
D. V = 6
- Câu 6 : Cho hình chữ nhật ABCD có AB= 2AD = 2. Quay hình chữ nhật ABCD lần lượt quanh AD và AB ta được hai hình trụ tròn xoay có thể tích lần lượt là . Hệ thức nào sau đây là đúng?
A.
B.
C.
D.
- Câu 7 : Cho hình lập phương ABCD.EFGH với . Gọi M, N, P, Q lần lượt là trung điểm bốn cạnh BF, FE, DH, DC. Hỏi mệnh đề nào đúng?
A. MNPQ là một tứ diện
B. MNPQ là một hình chữ nhật
C. MNPQ là một hình thoi
D. MNPQ là một hình vuông
- Câu 8 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, với SA = , SB = và và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi H, K lần lượt là trung điểm của AB, BC. Tính thể tích V của tứ diện K.SDC
A.
A.
C.
D.
- Câu 9 : Một hình trụ tròn xoay bán kính đáy bằng R, trục O'O = R. Một đoạn thẳng AB = R với A (O) và B (O'). Tính góc giữa AB và trục hình trụ.
A.
B.
A.
D.
- Câu 10 : Cho hình trụ có thiết diện qua trục là hình vuông. Xét hình cầu nhận hai đáy của hình trụ là hai hình tròn nhỏ đối xứng nhau qua tâm hình câu. Gọi lần lượt là thể tích của hình trụ và hình cầu. Tính tỉ số
A.
B.
C.
D.
- Câu 11 : Từ một miếng bìa hình vuông có cạnh bằng 5, người ta cắt 4 góc bìa 4 tứ giác bằng nhau và gập lại phần còn lại của tấm bìa để được một khối chóp tứ giác đều có cạnh đáy bằng x (xem hình vẽ bên). Cho chiều cao khối chóp tứ giác đều này bằng . Tính giá trị của x
A. x = 1
B. x = 2
C. x = 3
D. x = 4
- Câu 12 : Cho tứ diện S.ABC có M, N lần lượt là điểm chia SA và SC theo cùng tỉ số k. Mặt phẳng () qua MN cắt (ABC) theo giao tuyến cắt BC tại P và cắt AB tại Q. Tính tỉ số để MNPQ là hình bình hành.
A. k.
B. 2k.
C. k.
D. k.
- Câu 13 : Một hình trụ có bán kính đáy R = và thiết diện qua trục là một hình vuông. Tính diện tích xung quanh của hình trụ.
A. S =
B. S = 2
C. S = 3
D. S = 4
- Câu 14 : Cho hình nón tròn xoay có thiết diện qua đỉnh là một tam giác vuông cân. Mệnh đề nào trong các mệnh đề sau là sai?
A. Đường cao bằng bán kính đáy.
B. Đường sinh hợp với đáy góc
C. Đường sinh hợp với trục góc
D. Hai đường sinh tùy ý thì vuông góc nhau.
- Câu 15 : Cho tứ diện S.ABC. Trên cạnh SC lấy điểm M sao cho MS = 2MC. Gọi N là trung điểm cạnh SB. Tính tỉ số thể tích hai tứ diện SAMN và SACB.
A.
B.
C.
D.
- Câu 16 : Cho hình chóp tứ giác đều S.ABCD cạnh đáy 2a, cạnh bên hợp với cạnh đáy góc . Tính diện tích xung quanh của hình chóp
A.
B.
C.
D.
- Câu 17 : Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A với AB = a, AC = . Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC và góc giữa AA’ tạo với mặt phẳng (ABC) bằng . Gọi V là thể tích khối lăng trụ ABC.A'B'C'. Tính .
A. 1.
B. a.
C. .
D. .
- Câu 18 : Cho hình trụ trục OO', đường tròn đáy (C) và (C'). Xét hình nón đỉnh O', đáy (C) có đường sinh hợp với đáy góc . Cho biết tỉ số diện tích xung quanh của hình lăng trụ và hình nón bằng . Tính giá trị .
A. .
A. .
C. .
A. Kết quả khác
- Câu 19 : Cho hình nón tròn xoay đáy là đường tròn (C) tâm O, bán kính R = , đường cao SO = . Xét hình cầu tâm I, nhận (O) làm đường tròn nhỏ và nhận tất cả đường sinh của hình nón làm tiếp tuyến. Tính thể tích hình cầu.
A.
B.
C.
D.
- Câu 20 : Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A sao cho BC = AC' = 5a và AC = 4a. Tính thể tích hình lăng trụ.
A.
B.
C.
D. Kết quả khác
- Câu 21 : Thiết diện qua trục của một hình nón tròn xoay là tam giác đều, cạnh a. Tính tỉ số thể tích của hình cầu ngoại tiếp và hình cầu nội tiếp hình nón.
A.
B. 2
C. 4
D. 8
- Câu 22 : Cho hình chữ nhật ABCD cạnh AB = 4, AD = 2. Gọi M,N lần lượt là trung điểm AB và CD. Cho hình chữ nhật quay quanh MN ta thu được hình trụ tròn xoay. Tính thể tích của hình trụ tròn xoay.
A.
B.
C.
D.
- Câu 23 : Cho hình lập phương (L) và hình trụ (T) có thể tích lần lượt là và . Cho biết chiều cao của (T) bằng đường kính đáy và bằng cạnh của (L). Hãy chọn phương án đúng.
A.
B.
C.
D. Không so sánh được
- Câu 24 : Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) và ABCD là hình vuông cạnh a, góc giữa SC và mặt phẳng (ABCD) bằng . Mặt phẳng () qua A và vuông góc với SC và chia khối chóp S.ABCD thành hai khối đa diện. Gọi là thể tích của khối đa diện có chứa điểm S và là thể tích của khối đa diện còn lại. Tìm tỉ số ?
A. 1
A.
C.
D.
- Câu 25 : Trong không gian, cho hình (H) gồm mặt cầu S(I;R) và đường thẳng đi qua tâm I của mặt cầu (S). Số mặt phẳng đối xứng của hình (H) là:
A. 2
B. 1
C. Vô số
D. 3
- Câu 26 : Trong không gian, cho hai đường thẳng I, vuông góc và cắt nhau tại O. Hình tròn xoay khi quay đường thẳng l quanh trục là:
A. Mặt phẳng
B. Mặt trụ tròn xoay
C. Mặt cầu
D. Đường thẳng
- Câu 27 : Cho hình chóp đều n cạnh (n 3). Cho biết bán kính đường tròn ngoại tiếp đa giác đáy là R và góc giữa mặt bên và mặt đáy bằng , thể tích khối chóp bằng . Tìm n?
A. n = 4
B. n = 8
C. n = 10
D. n = 6
- Câu 28 : Hình tứ diện đều có số mặt phẳng đối xứng là
A. 3.
B. 6.
C. 4.
D. 0.
- Câu 29 : Cho khối chóp tứ giác đều S.ABCD. Mặt phẳng chứa AB đi qua điểm C' nằm trên cạnh SC chia khối chóp thành hai phần có thể tích bằng nhau. Tính tỉ số
A.
B.
C.
D.
- Câu 30 : Cho hình chóp S.ABCD đáy ABCD là hình thang vuông tại A, B. Nhận định nào sau đây đúng
A. tam giác SCD vuông
B. tam giác SCD cân
C.tam giác SCD đều
D. tam giác SCD vuông cân
- Câu 31 : Hình bên cho ta hình ảnh của một đồng hồ cát với các kích thước kèm theo OA = OB. Khi đó tỉ số tổng thể tích của hai hình nón và thể tích hình trụ bằng
A.
B.
C.
D.
- Câu 32 : Một chiếc cốc dạng hình nón chứa đầy rượu. Trương Phi uống một lượng rượu nên “chiều cao” của rượu còn lại trong cốc bằng một nửa chiều cao ban đầu. Hỏi Trương Phi đã uống bao nhiêu phần rượu trong cốc ?
A.
B.
C.
D.
- Câu 33 : Xét các hình chóp S.ABC có SA = SB = SC = AB = BC = a. Giá trị lớn nhất của thể tích hình chóp S.ABC bằng:
A.
B.
C.
D.
- Câu 34 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I. Cạnh SA vuông góc với mặt phẳng (ABCD), . Bán kính đường tròn ngoại tiếp hình chữ nhật ABCD bằng , góc . Tính theo a thể tích khối chóp S.ABCD
A.
B.
C.
D.
- Câu 35 : Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều, SC = SD = . Tính cosin của góc giữa hai mặt phẳng (SAD) và (SBC). Gọi I là trung điểm của AB; J là trung điểm của CD. Gọi H là hình chiếu của S trên (ABCD) . Qua H kẻ đường thẳng song song với AB, đường thẳng này cắt DA và CB kéo dài tại M, N . Các nhận định sau đây.
A. (1), (2) đúng , (3) sai
B. (1), (2), (3) đúng (4) sai
C. (3), (4) đúng (1) sai
D. (1), (2), (3), (4) đúng
- Câu 36 : Một vật thể có dạng hình trụ, bán kính đường tròn đáy và độ dài của nó đều bằng 2r (cm). Người ta khoan một lỗ cũng có dạng hình trụ như hình, có bán kính đáy và độ sâu đều bằng r (cm). Thể tích phần vật thể còn lại (tính theo cm3) là:
A.
B.
C.
D.
- Câu 37 : Một lọ nước hoa thương hiệu Quang Baby được thiết kế vỏ dạng nón, phần chứa dung dịch nước hoa là hình trụ nội tiếp hình nón trên. Hỏi để vẫn vỏ lọ nước hoa là hình nón trên. Tính tỉ lệ giữa x và chiều cao hình nón để cho lọ nước hoa đó chứa được nhiều dung dịch nước hoa nhất.
A.
B. 1
C.
D.
- Câu 38 : Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh , BD = 3a. hình chiếu vuông góc của B lên mặt phẳng (A'B'C'D') là trung điểm của A'C'. Biết rằng côsin của góc tạo bởi hai mặt phẳng (ABCD) và (CDD'C') bằng . Tính theo a bán kính mặt cầu ngoại tiếp tứ diện A'BC'D'.
A. a
B. 2a
C. 3a
D.
- Câu 39 : Cho khối nón tròn xoay có đường cao h = 20 cm, bán kính đáy r = 25 cm. Một mặt phẳng (P) chứa đỉnh S và giao tuyến với mặt phẳng đáy là AB. Khoảng cách từ tâm O của đáy đến mặt phẳng (P) là 12 cm. Khi đó diện tích thiết diện của (P) với khối nón bằng:
A. 500
B. 475
C. 450
D. 550
- Câu 40 : Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh a, cạnh bên SB = b và tam giác SAC cân tại S. Trên cạnh AB lấy điểm M với AM = x (0 < x < a). Mặt phẳng () qua M song song với AC, SB và cắt BC, SC, SA lần lượt tại N, P, Q. Xác định x để diện tích thiết diện MNPQ đạt giá trị lớn nhất.
A. x =
B. x =
C. x =
D. x =
- Câu 41 : Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN, PQ của hai đáy sao cho MN PQ. Người thợ đó cắt khối đá theo các mặt cắt đi qua 3 trong 4 điểm M, N, P, Q để thu được một khối đá có hình tứ diện MNPQ. Biết rằng MN = 60 cm và thể tích của khối tứ diện MNPQ bằng 30 . Hãy tính thể tích của lượng đá bị cắt bỏ (làm tròn kết quả đến 1 chữ số thập )
A. 111,4
B. 121,3
C. 101,3
D. 141,3
- Câu 42 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), AB = a, BC = , SA = a. Một mặt phẳng () qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a.
- Câu 43 : Cho hình chóp S.ABC có đáy là ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Biết hình chóp S.ABC có thể tích bằng . Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).
- Câu 44 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt phẳng (SAB) vuông góc với đáy (ABCD). Gọi H là trung điểm của AB, SH = HC, SA = AB. Gọi là góc giữa đường thẳng SC và mặt phẳng (ABCD). Tính giá trị của .
- Câu 45 : Một nhà máy sản xuất nước ngọt cần làm các lon dựng dạng hình trụ với thể tích đựng được là V. Biết rằng diện tích toàn phần nhỏ nhất thì tiết kiệm chi phí nhất. Tính bán kính của lon để tiết kiệm chi phí nhất.
- Câu 46 : Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = 1, AD = 2, cạnh bên SA =1 và SA vuông góc với đáy. Gọi E là trung điểm của AD. Tính diện tích của mặt cầu ngoại tiếp hình chóp S.CDE.
- Câu 47 : Trong không gian cho tam giác ABC vuông cân tại A, AB = AC = 2a. Tính độ dài đường sinh l của hình nón, nhận được khi quay tam giác ABC xung quanh trục AC.
- Câu 48 : Một công ty Container cần thiết kết các thùng đựng hàng hình hộp chữ nhật, không nắp, có đáy hình vuông, thể tích là . Tìm tổng diện tích nhỏ nhất của các mặt xung quanh và mặt đáy
- Câu 49 : Cho lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a. Mặt phẳng (C'BD) hợp với đáy góc . Tính thể tích lăng trụ
- Câu 50 : Cho hình chóp S.ABCD có ABC là tam giác đều cạnh a và SA vuông góc với đáy. Góc tạo bởi SB và mặt phẳng (ABC) bằng . Tính khoảng cách từ A đến mặt phẳng (SBC).
- Câu 51 : Cho lăng trụ đứng ABC.A'B'C' cạnh bên AA' = 2, đáy là tam giác vuông cân ABC đỉnh A, canh huyền . Tính thể tích của hình trụ tròn xoay có đáy là hai đường tròn tâm A, bán kính AB và đường tròn tâm A', bán kính A'B'.
- Câu 52 : Cho tứ diện S.ABCD có SA = AB = AC = a và AS, AB, AC vuông góc nhau từng đôi một. Tính diện tích mặt cầu ngoại tiếp tứ diện
- Câu 53 : Một hình hộp chữ nhật ABCD.A'B'C'D' có đáy là hình thoi cạnh a, góc , cạnh bên hợp với đáy góc sao cho A’ chiếu xuống mặt phẳng (ABCD) trùng với giao điểm O của hai đường chéo mặt đáy. Tính thể tích hình hộp.
- Câu 54 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB và AD; H là giao điểm của CN và DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH = . Tính thể tích khối chóp S.CDNM theo a.
- Câu 55 : Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B; AB = BC = a, AD = 2a, SA (ABCD). Góc giữa mặt phẳng (SCD) và (ABCD) bằng . Gọi M là trung điểm AD. Tính theo a thể tích V khối chóp S.MCD và khoảng cách d giữa hai đường thẳng SM và BD
- Câu 56 : Cho hình chữ nhật ABCD có cạnh AB = , AD = 1. Lấy điểm M trên CD sao cho MD = . Cho hình vẽ quay quanh AB, tam giác MAB tạo thành vật tròn xoay gồm 2 hình nón chung đáy. Tính diện tích toàn phần của vật tròn xoay này.
- Câu 57 : Cho hình chóp tứ giác đều S.ABCD, cạnh đáy AB = 2a, góc . Gọi V là thể tích của khối chóp. Kết quả nào sau đây sai?
- Câu 58 : Cho lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng . Biết hình chiếu vuông góc của A' trên (ABC) trùng với trung điểm cạnh BC. Tính theo a bán kính mặt cầu ngoại tiếp tứ diện A'.ABC
- Câu 59 : Cho hình trụ có thiết diện qua trục là hình vuông. Xét hình cầu nhận hai đáy của hình trụ là hai hình tròn nhỏ đối xứng nhau qua tâm hình câu. Gọi lần lượt là thể tích của hình trụ và hình cầu. Tính tỉ số
- Câu 60 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi với cạnh , và cạnh bên SA (ABCD). Biết số đo của góc giữa hai mặt phẳng (SBC) và (ABCD) bằng . Tính khoảng cách d giữa hai đường thẳng BD và SC.
- Câu 61 : Cho tứ diện ABCD có DA (ABCD), DA = 1 và ABC là tam giác đều cạnh bằng 1. Trên ba cạnh DA, DB, DC lấy 3 điểm M, N, P mà . Tính thể tích khối tứ diện MNPD.
- Câu 62 : Từ một tấm tôn hình chữ nhật kích thước 50cm240cm người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50cm, theo hai cách sau (xem hình minh họa dưới đây)
- Câu 63 : Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a; cạnh bên trùng với đáy một góc sao cho A' có hình chiếu xuống mặt phẳng (ABC) trùng với trọng tâm của ABC. Tính thể tích khối lăng trụ.
- Câu 64 : Một hình nón tròn xoay có bán kính bằng chiều cao và bằng 1. Gọi O là tâm của đường tròn đáy. Xét thiết diện qua đỉnh S hình nón là tam giác đều SAB. Tính khoảng cách từ O đến mặt phẳng (SAB)
- Câu 65 : Cho tứ diện S.ABC có đáy ABC là tam giác vuông tại B với AB = 3, BC = 4. Hai mặt bên (SAB) và (SAC) cùng vuông góc với (ABC) và SC hợp với (ABC) góc . Tính thể tích hình cầu ngoại tiếp S.ABC.
- Câu 66 : Cắt bỏ hình quạt tròn AOB từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của hình quạt tròn còn lại với nhau để được một cái phễu có dạng của một hình nón. Gọi x là góc ở tâm của quạt tròn dùng làm phễu .Tìm giá trị lớn nhất của thể tích hình nón.
- Câu 67 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với mặt đáy và SA = AB = a. Tính bán kính mặt cầu ngoại tiếp khối chóp.
- Câu 68 : Một hình chữ nhật ABCD có AB = a và với . Cho hình chữ nhật đó quay quanh cạnh AB, tam giác ABC tạo thành một hình nón có diện tích xung quanh là S. Mệnh đề nào là sai?
- Câu 69 : Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = b, AA' = c. Tính khoảng cách từ điểm A đến đường thẳng BD'
- Câu 70 : Cho S.ABC là hình chóp tam giác đều, cạnh đáy là a, cạnh bên hợp với mặt đáy góc . Tính diện tích xung quanh của hình nón tròn xoay có đỉnh S, đáy là đường tròn ngoại tiếp tam giác ABC.
- Câu 71 : Một hình chóp tứ giác đều có cạnh đáy bằng cạnh bên và bằng a. Tính diện tích S của mặt cầu ngoại tiếp hình chóp.
- Câu 72 : Cho hình lăng trụ tứ giác đều ABCD.A'B'C'D' có cạnh đấy bằng a, khoảng cách từ A đến mặt phẳng (A’BC) bằng .Tính thể tích lăng trụ.
- Câu 73 : Cho tam giác ABC đều cạnh a và nội tiếp trong đường tròn tâm O, AD là đường kính của đường tròn tâm O. Thể tích của khối tròn xoay sinh ra khi cho phần màu vàng nhạt (hình vẽ bên dưới) quay quanh đường thẳng AD bằng
- Câu 74 : Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A có BC = 2a. Biết góc giữa hai mặt phẳng (A'BC) và (ABC) bằng và khoảng cách giữa hai đường thẳng A'A, BC bằng . Tính thể tích lăng trụ ABC.A'B'C'
- Câu 75 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a (a > 0). Hai mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) một góc . Biết SB = a và hình chiếu của S trên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính thể tích khối chóp S.ABCD
- Câu 76 : Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABC), đáy ABC là tam giác cân tại A và 2a. Gọi M, N lần lượt là hình chiếu của điểm A trên SB, SC. Tính bán kính mặt cầu đi qua bốn điểm A, N, M, B.
- Câu 77 : Trong không gian mặt cầu (S) tiếp xúc với 6 mặt của một hình lập phương cạnh a, thể tích khối cầu (S) bằng
- Câu 78 : Cho tứ diện ABCD đều có cạnh bằng a và trọng tâm G. Tập hợp các điểm M thỏa mãn là mặt cầu
- Câu 79 : Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi G là trọng tâm tam giác A’BD. Tìm thể tích khối tứ diện GABD
- Câu 80 : Tìm thể tích của hình chóp S.ABC biết SA = a, SB = , SC = 2a và có
- Câu 81 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a với SA = , SB = , và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi H, K lần lượt là trung điểm của AB, BC. Thể tích tứ diện K.SDC có giá trị là:
- Câu 82 : Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, và AA' = Hình chiếu vuông góc của A' lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD.Tính theo a thể tích khối hộp ABCD.A'B'C'D'
- Câu 83 : Cho lăng trụ tam giác có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng . Hình chiếu của điểm A lên mặt phẳng () thuộc đường thẳng . Khoảng cách giữa hai đường thẳng và theo a là:
- Câu 84 : Cho lăng trụ tam giác có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng . Hình chiếu của điểm A lên mặt phẳng () thuộc đường thẳng . Tính theo a bán kính mặt cầu ngoại tiếp tứ diện .
- Câu 85 : Cho hình chóp S.ABCD đáy ABCD là hình vuông cạnh a, (SAB) (ABCD). H là trung điểm của AB, SH = HC, SA = AB. Gọi là góc giữa đường thẳng SC và mặt phẳng (ABCD). Giá trị của là:
- Câu 86 : Cho mặt nón tròn xoay đỉnh O có góc ở đỉnh bằng . Một mặt phẳng (P) vuông góc với trục của mặt nón tại H, biết OH = a. Khi đó, (P) cắt mặt nón theo đường tròn có bán kính bằng:
- Câu 87 : Gọi l và R lần lượt là tổng độ dài các cạnh và bán kính mặt cầu ngoại tiếp một tứ diện. Hỏi rằng trong số các tứ diện, tứ diện nào thì tỉ số đạt giá trị lớn nhất. Tính giá trị lớn nhất đó?
- Câu 88 : Cho hình trụ T có trục OO' Trên hai đường tròn đáy (O) và (O') lần lượt lấy hai điểm A và B sao cho AB = a và đường thẳng AB tạo với đáy của hình trụ góc . Gọi hình chiếu của B trên mặt phẳng đáy chứa đường tròn (O) là B'. Biết rằng . Tính khoảng cách d giữa hai đường thẳng AB và O
- Câu 89 : Các trung điểm của các cạnh của một tứ diện đều cạnh a là các đỉnh của khối đa diện đều. Tính thể tích V của khối đa diện đều đó.
- Câu 90 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = 2a. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABCD
- Câu 91 : Cho hình lăng trụ ABC.A'B'C', đáy ABC có AC = , BC = 3a, . Cạnh bên hợp với mặt phẳng đáy góc và mặt phẳng (A'BC) vuông góc với mặt phẳng (ABC). Điểm H trên cạnh BC sao cho BC = 3BH và mặt phẳng (A'AH) vuông góc với mặt phẳng (ABC). Thể tích khối lăng trụ (ABC.A'B'C')bằng:
- Câu 92 : Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh , BD = 3a, hình chiếu vuông góc của B lên mặt phẳng (A'B'C'D') là trung điểm của A'C'. biết rằng côsin của góc tạo bởi hai mặt phẳng (ABCD) và (CDD'C') bằng . Tính theo a thể tích khối hộp ABCD.A'B'C'D'
- Câu 93 : Cho lăng trụ ABC.A'B'C' có đáy là tam giác vuông tại A, AB = a và AC = . Biết rằng ((ABC),(AB'C')) = và hình chiếu A lên (A'B'C') là trung điểm H của A'B'. Tính bán kính R của mặt cầu ngoại tiếp tứ diện AHB'C'.
- Câu 94 : Cho một hình trụ tròn xoay và hình vuông (ABCD) cạnh a có hai đỉnh liên tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc . Thể tích của hình trụ bằng
- Câu 95 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh , cạnh bên SA vuông góc với mặt phẳng đáy và SA = 3. Mặt phẳng qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tự diện CMNP.
- Câu 96 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC), gọi M là điểm thuộc cạnh SC sao cho MC = 2MS. Biết AB = 3, BC = . Tính thể tích của khối chóp
- Câu 97 : Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh a, cạnh bên SB = b và tam giác SAC cân tại S. Trên cạnh AB lấy điểm M với AM = x (0 < x< a). Mặt phẳng qua M song song với AC, SB và cắt BC, SC, SA lần lượt tại N, P, Q. Xác định x để diện tích thiết diện MNPQ đạt giá trị lớn nhất.
- Câu 98 : Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN, PQ của hai đáy sao cho MN PQ. Người thợ đó cắt khối đá theo các mặt cắt đi qua 3 trong 4 điểm M, N, P, Q để thu được một khối đá có hình tứ diện MNPQ. Biết rằng MN = 60 cm và thể tích của khối tứ diện MNPQ bằng . Hãy tính thể tích của lượng đá bị cắt bỏ (làm tròn kết quả đến 1 chữ số thập phân)
- Câu 99 : Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh đều bằng a. Tính diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a.
- Câu 100 : Cho hình nón tròn xoay đỉnh S, đáy là một hìnht tròn tâm O bán kính R, chiều cao của hình nón bằng 2R. Gọi I là một điểm nằm trên mặt phẳng đáy sao cho IO = 2R. Giả sử A là điểm trên đường tròn (O) sao cho OA OI. Diện tích xung quanh của hình nón bằng:
- Câu 101 : Cho hình chóp S.ABCD có đáy là hình thang ABCD vuông tại A và D có AB = 2AD = 2CD, SA vuông góc với đáy (ABCD). Góc giữa SC và đáy bằng . Biết khoảng cách từ B đến (SCD) là , khi đó tỉ số bằng
- Câu 102 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa SB và AD bằng:
- Câu 103 : Cho hình chóp S.ABC đáy ABC là tam giác vuông cân tại A có BC = , SA = và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là:
- Câu 104 : Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều có cạnh bằng a, cạnh bên tạo với đáy góc . Biết hình chiếu vuông góc của A' trên (ABC) trùng với trung điểm cạnh BC. Tính bán kính mặt cầu ngoại tiếp tứ diện A'ABC.
- Câu 105 : Diện tích và chu vi của một hình chữ nhật ABCD (AB > AD) theo thứ tự là và . Cho hình chữ nhật quay quanh cạnh AB một vòng, ta được một hình trụ. Tính thể tích và diện tích xung quanh của hình trụ này.
- Câu 106 : Một cái rổ (trong môn thể thao bong rổ) dạng một hình trụ đứng, bán kính đường tròn đáy là r (cm), chiều cao 2r (cm), người đặt hai quả bong như hình. Như vậy diện tích toàn bộ của rổ và phần còn lại nhô ra của 2 quả cầu là bao nhiêu. Biết răng mỗi quả bóng bị nhô ra một nửa.
- Câu 107 : Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cà các cạnh đều bằng a. Tính diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a.
- Câu 108 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD). Biết SD = và góc tạo bởi đường thẳng SC với mặt phẳng (ABCD) bằng . Tính theo a thể tích khối chóp S.ABCD.
- Câu 109 : Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh a, cạnh bên SB = b và tam giác SAC cân tại S. Trên cạnh AB lấy điểm M với AM = x (0 < x < a) Mặt phẳng () qua M song song với AC, SB và cắt BC, SC, SA lần lượt tại N, P, Q. Xác định x để diện tích thiết diện MNPQ đạt giá trị lớn nhất.
- Câu 110 : Cho lăng trụ tam giác đều ABC.A'B'C' cạnh đáy bằng a; chiều cao bằng 2a. Mặt phẳng (P) qua B' và vuông góc A'C chia lăng trụ thành hai khối. Tính khoảng cách từ điểm A đến (P).
- Câu 111 : Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều cạnh a, cạnh SA = . Gọi D là điểm đối xứng của B qua C. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.A
- Câu 112 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh , cạnh bên SA vuông góc với mặt phẳng đáy và SA = 3. Mặt phẳng () qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tự diện CMNP.
- Câu 113 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC), gọi M là điểm thuộc cạnh SC sao cho MC = 2MS. Biết AB = 3, BC = . Tính thể tích của khối chóp S.ABC
- Câu 114 : Cho hình lăng trụ tam giác đều ABC.AB'C' có tất cả các cạnh đều bằng a. Tính diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a.
- Câu 115 : Cho hình nón tròn xoay đỉnh S, đáy là một hìnht tròn tâm O bán kính R, chiều cao của hình nón bằng 2R. Gọi I là một điểm nằm trên mặt phẳng đáy sao cho IO = 2R. Giả sử A là điểm trên đường tròn (O) sao cho OA OI. Diện tích xung quanh của hình nón bằng:
- - Trắc nghiệm Toán 12 Chương 2 Bài 1 Lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 2 Hàm số lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 4 Hàm số mũ và hàm số lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 5 Phương trình mũ và phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 3 Bài 1 Nguyên hàm
- - Trắc nghiệm Toán 12 Chương 3 Bài 2 Tích phân
- - Trắc nghiệm Toán 12 Chương 3 Bài 3 Ứng dụng của tích phân trong hình học
- - Trắc nghiệm Toán 12 Bài 1 Số phức
- - Trắc nghiệm Toán 12 Bài 2 Cộng, trừ và nhân số phức