Trắc nghiệm Toán 12 Bài 2 Cộng, trừ và nhân số phứ...
- Câu 1 : Cho số phức \(z = \left( {{m^2} + m - 2} \right) + \left( {{m^2} - 1} \right)i\,(m \in R)\). Tìm giá trị của m để z là số thuần ảo và khác 0.
A. m=1
B. m=2
C. m=-2
D. \(m = \pm 1\)
- Câu 2 : Cho số phức z, biết \(z - \left( {2 + 3i} \right)\bar z = 1 - 9i\). Tìm phần ảo của số phức z.
A. -1
B. -2
C. 1
D. 2
- Câu 3 : Cho số phức \(z=2–3i\). Tìm môđun của số phức \(\omega = 2z + \left( {1 + i} \right)\overline z\).
A. \(\left| \omega \right| = 4\)
B. \(\left| \omega \right| = 2\sqrt 2\)
C. \(\left| \omega \right| = \sqrt {10}\)
D. \(\left| \omega \right| = 2\)
- Câu 4 : Tìm số phức z thỏa mãn \(z + z.\overline z = \frac{i}{2}\).
A. \(z = \frac{1}{2} + \frac{1}{2}i\)
B. \(z = - \frac{1}{2} + \frac{1}{2}i\)
C. \(z= \frac{1}{2} + \frac{3}{2}i\)
D. \(z = - \frac{1}{2}i\)
- Câu 5 : Số phức z = 2-3i có điểm biểu diễn là :
A. (2;3)
B. (-2;-3)
C. (2;-3)
D. (-2;3)
- Câu 6 : Số phức z = 6+7i. Số phức liên hợp của z có điểm biểu diễn là:
A. (6;7)
B. (6;-7)
C. (-6;7)
D. (-6;-7)
- Câu 7 : Số phức z = a+bi . Số z + \(\overline z \) luôn là :
A. Số thực
B. Số ảo
C. 0
D. 2
- Câu 8 : Số phức z = a+bi , b\(\ne\)0 . Số z-\(\overline z \)luôn là :
A. Số thực
B. Số ảo
C. 0
D. i
- Câu 9 : Gọi A là điểm biểu diễn của số phức z = 2+5i và B là điểm biểu diễn của số phức z = -2-5iTìm mệnh đề đúng trong các mệnh đề sau :
A. Hai điểm A và B đối xứng nhau qua trục hoành
B. Hai điểm A và B đối xứng nhau qua trục tung
C. Hai điểm A và B đối xứng nhau qua gốc tọa độ O
D. Hai điểm A và B đối xứng nhau qua đường thẳng y=x
- Câu 10 : Gọi A là điểm biểu diễn của số phức z = 3+2i và B là điểm biểu diễn của số phức \(\overline z \) = 3-2iTìm mệnh đề đúng trong các mệnh đề sau :
A. Hai điểm A và B đối xứng nhau qua trục hoành
B. Hai điểm A và B đối xứng nhau qua trục tung
C. Hai điểm A và B đối xứng nhau qua gốc tọa độ O
D. Hai điểm A và B đối xứng nhau qua đường thẳng y=x
- Câu 11 : Phần thực và phần ảo của số phức z = (3 + 4i)(4 - 3i) + (2 - i)(3 + 2i) là
A. 32 và 8i
B. 32 và 8
C. 18 và -14
D. 32 và -8
- Câu 12 : Cho hai số phức z1 = - 3 + 4i, z2 = 4 - 3i . Môđun của số phức z = z1 + z2 + z1. z2 là
A. 27
B. \(\sqrt {27} \)
C. \(\sqrt {677} \)
D. 677
- Câu 13 : Cho các số phức z1 = -1 + i, z2 = 1 - 2i, z3 = 1 + 2i . Giá trị của biểu thức T = |z1z2 + z2z3 + z3z1| là
A. 1
B. \(\sqrt {13} \)
C. 5
D. 13
- Câu 14 : Số phức z = (1 - i)3 bằng
A. 1+i
B. -2-2i
C. -2+2i
D. 4+4i
- Câu 15 : Cho số phức z thỏa mãn (1 + 2i)z + i.\(\overline z \)= 2i . Khi đó tích z.i\(\overline z \) bằng
A. -2
B. 2
C. -2i
D. 2i
- Câu 16 : Cho hai số phức z1, z2 thỏa mãn |z1| = |z2| = |z1 + z2| = 1 . Khi đó |z1- z2| bằng
A. 0
B. 1
C. \(\sqrt 2\)
D. \(\sqrt 3 \)
- Câu 17 : Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 - 2i| = 2 là
A. Đường tròn tâm I(1; -2) bán kính R = 2
B. Đường tròn tâm I(1; -2) bán kính R = 4
C. Đường tròn tâm I(-1; 2) bán kính R = 2
D. Đường tròn tâm I(-1; 2) bán kính R = 4
- - Trắc nghiệm Toán 12 Chương 2 Bài 1 Lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 2 Hàm số lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 4 Hàm số mũ và hàm số lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 5 Phương trình mũ và phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 3 Bài 1 Nguyên hàm
- - Trắc nghiệm Toán 12 Chương 3 Bài 2 Tích phân
- - Trắc nghiệm Toán 12 Chương 3 Bài 3 Ứng dụng của tích phân trong hình học
- - Trắc nghiệm Toán 12 Bài 1 Số phức
- - Trắc nghiệm Toán 12 Bài 2 Cộng, trừ và nhân số phức