Trắc nghiệm Khái niệm về mặt tròn xoay có đáp án (...
- Câu 1 : Cho hình hộp chữ nhật ABCD. A'B'C'D' có đáy là hình vuông cạnh a và cạnh bên bằng 2a. Tính diện tích xung quanh của hình nón có đỉnh là tâm O của hình vuông A'B'C'D' và đáy là hình tròn nội tiếp hình vuông ABCD.
A.
B.
C.
D.
- Câu 2 : Thiết diện qua trục của hình trụ là hình vuông ABCD có AC = 4a. Tính thể tích khối trụ.
A.
B.
C.
D.
- Câu 3 : Cắt một khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có cạnh AB và cạnh CD nằm trên hai đáy của khối trụ. Biết . Tính thể tích khối trụ.
A.
B.
C.
D.
- Câu 4 : Cho hình nón có góc ở đỉnh bằng , diện tích xung quanh bằng . Tính theo a thể tích V của khối nón đã cho.
A.
B.
C.
D.
- Câu 5 : Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh đường thẳng CD. Tính thể tích khối tròn xoay thu được.
A.
B.
C.
D.
- Câu 6 : Cho hình nón có bán kính đáy bằng 2 cm, góc ở đỉnh bằng . Tính thể tích khối nón.
A.
B.
C.
D.
- Câu 7 : Cho một hình nón (N) đỉnh S có chiều cao bằng 8 cm, bán kính đáy bằng 6 cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón đỉnh S có đường sinh bằng 4 cm. Tính thể tích của khối nón .
A.
B.
C.
D.
- Câu 8 : Tam giác ABC vuông cân đỉnh A có cạnh huyền là 2. Quay hình tam giác ABC quanh trục BC thì được một khối tròn xoay có thể tích là
A.
B.
C.
D.
- Câu 9 : Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Tam giác SAB có diện tích bằng . Tính thể tích V của khối nón có đỉnh là S và đường tròn đáy nội tiếp ABCD.
A.
B.
C.
D.
- Câu 10 : Trong không gian cho tam giác ABC vuông tại A có và . Tính thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC.
A. V = 5π
B. V = 9π
C. V = 3π
D. V = 2π
- Câu 11 : Một khối nón có đường sinh bằng 2a và diện tích xung quanh của mặt nón bằng . Tính thể tích của khối nón đã cho.
A.
B.
C.
D.
- Câu 12 : Cho tam giác ABC vuông tại A, AH vuông góc với BC tại H, HB=3,6 cm, HC=6,4 cm. Quay miền tam giác ABC quanh đường thẳng AH ta thu được khối nón có thể tích bằng bao nhiêu?
A.
B.
C.
D.
- Câu 13 : Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên SA và mặt đáy bằng . Tính diện tích xung quanh của hình trụ có một đường tròn nội tiếp hình vuông ABCD và chiều cao bằng chiều cao của hình chóp S.ABCD.
A.
B.
C.
D.
- Câu 14 : Cho hình nón có góc ở đỉnh bằng , diện tích xung quanh bằng . Tính thể tích V của khối nón đã cho.
A.
B.
C.
D.
- Câu 15 : Cho hình lập phương ABCD. A'B'C'D' có cạnh đáy bằng a với O và O' lần lượt là tâm của hình vuông ABCD và A'B'C'D'. Gọi (T) là hình trụ tròn xoay tại thành khi quay hình chữ nhật AA'C'C quanh trục OO'. Thể tích của khối trụ (T) bằng
A.
B.
C.
D.
- Câu 16 : Cho hai khối nón . Chiều cao khối nón bằng hai lần chiều cao khối nón và đường sinh khối nón bằng hai lần đường sinh khối nón . Gọi lần lượt là thể tích hai khối nón . Tỉ số bằng
A.
B.
C.
D.
- Câu 17 : Xét hình trụ (T) có bán kính R, chiều cao h thỏa ; (N) là hình nón có bán kính đáy R và chiều cao gấp đôi chiều cao của (T). Gọi và lần lượt là diện tích xung quanh của (T) và (N). Khi đó bằng
A.
B.
C.
D.
- Câu 18 : Cho hình trụ có hai đáy là hình tròn tâm O và O', bán kính bằng R, chiều cao và hình nón có đỉnh là O', đáy là đường tròn (O;R). Tính tỉ số giữa diện tích xung quanh của hình trụ và diện tích xung quanh của hình nón.
A. 2
B. 3
C.
D.
- Câu 19 : Cho hình lăng trụ đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng , diện tích tam giác A'BC bằng . Tính diện tích xung quanh hình trụ ngoại tiếp hình lăng trụ ABC. A'B'C'.
A.
B.
C.
D.
- Câu 20 : Một hình nón có chiều cao h=3, bán kính đáy r=5. Mặt phẳng đi qua đỉnh hình nón nhưng không đi qua trục của hình nón cắt hình nón theo một thiết diện là một tam giác cân có độ dài cạnh đáy bằng 8. Tính diện tích của thiết diện.
A.
B.
C.
D.
- Câu 21 : Hình nón tròn xoay ngoại tiếp tứ diện đều cạnh a, có diện tích xung quanh là
A.
B.
C.
D.
- Câu 22 : Một khối trụ có thể tích bằng 25π. Nếu chiều cao khối trụ tăng lên năm lần và giữ nguyên bán kính đáy thì khối trụ mới có diện tích xung quanh bằng 25π. Bán kính đáy của khối trụ ban đầu là
A. r = 10
B. r = 5
C. r = 2
D. r = 15
- Câu 23 : Một hình trụ có bán kính đáy bằng r và khoảng cách giữa hai đáy là . Một hình nón có đỉnh là tâm của mặt đáy này và đáy trùng với đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.
A.
B.
C.
D. 3
- Câu 24 : Một hình trụ có bán kính đáy bằng 5 và khoảng cách giữa hai đáy bằng 7. Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3. Tính diện tích S của thiết diện tạo thành.
A. S = 56
B. S = 28
C.
D.
- Câu 25 : Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy, đường sinh bằng và góc giữa đường sinh và mặt phẳng đáy bằng . Tính diện tích xung quanh của hình nón và thể tích V của khối nón.
A.
B.
C.
D.
- Câu 26 : Cho hình chữ nhật ABCD có AB=a và góc . Quay hình chữ nhật này xung quanh cạnh AD. Diện tích xung quanh của hình trụ được tạo thành là
A.
B.
C.
D.
- Câu 27 : Một khối nón có bán kính đáy là 9 cm, góc giữa đường sinh và mặt đáy bằng . Tính diện tích thiết diện của khối nón cắt bởi mặt phẳng đi qua hai đường sinh vuông góc với nhau.
A.
B.
C.
D.
- Câu 28 : Cho hình trụ (T) được sinh ra khi quay hình chữ nhật ABCD quanh cạnh AB. Biết AC=2 a và góc . Diện tích toàn phần của hình trụ (T) là
A.
B.
C.
D.
- Câu 29 : Một tứ diện đều cạnh a có một đỉnh trùng với đỉnh hình nón, 3 đỉnh còn lại nằm trên đường tròn đáy của hình nón. Khi đó diện tích xung quanh của hình nón bằng
A.
B.
C.
D.
- Câu 30 : Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông ABCD và A'B'C'D'.
A.
B.
C.
D.
- Câu 31 : Cho hình trụ có hai đáy là hai hình tròn (O;r), (O';r) và . Gọi (T) là hình nón có đỉnh O' và đáy là hình tròn (O;r); là diện tích xung quanh của hình trụ và là diện tích xung quanh của hình nón (T). Tỉ số bằng
A.
B.
C. 2
D.
- Câu 32 : Cho hình chữ nhật ABCD có AB=2AD và M, N lần lượt là trung điểm của các cạnh AB và CD. Khi quay hình chữ nhật ABCD quanh đường thẳng MN ta được một khối tròn xoay có thể tích . Diện tích của hình chữ nhật ABCD là
A.
B.
C.
D.
- Câu 33 : Thiết diện qua trục của một hình nón là một tam giác vuông cân cạnh . Một thiết diện qua đỉnh tạo với đáy một góc . Tính diện tích của thiết diện đó.
A.
B.
C.
D.
- Câu 34 : Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính quả bóng bàn. Gọi là tổng diện tích của ba quả bóng bàn, là diện tích xung quanh của hinh trụ. Tỉ số bằng
A.
B. 1
C. 2
D.
- Câu 35 : Cắt hình nón bởi một mặt phẳng đi qua trục ta được thiết diện là một tam giác vuông cân có cạnh huyền bằng . Tính thể tích V của khối nón đó.
A.
B.
C.
D.
- Câu 36 : Cho tứ diện đều ABCD có cạnh bằng 6. Tính diện tích xung quanh của hình trụ có một đường tròn đáy là đường tròn ngoại tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD.
A.
B.
C.
D.
- Câu 37 : Cho hình nón (N) có bán kính đáy bằng a và diện tích xung quanh . Tính thể tích V của khối chóp tứ giác đều S.ABCD có đáy ABCD nội tiếp đáy hình nón (N) và đỉnh S trùng với đỉnh hình nón (N).
A.
B.
C.
D.
- Câu 38 : Cho hình lăng trụ tam giác đều ABC. A'B'C' có độ dài cạnh đáy bằng a và chiều cao bằng h. Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho.
A.
B.
C.
D.
- Câu 39 : Một tứ diện đều cạnh bằng a có một đỉnh trùng với đỉnh của hình nón, ba đỉnh còn lại nằm trên đường tròn đáy của hình nón. Khi đó diện tích xung quanh của hình nón là
A.
B.
C.
D.
- Câu 40 : Cho hình chóp S.ABC có SA=SB=SC=4, AB=BC=CA=3. Tính thể tích khối nón giới hạn bởi hình nón có đỉnh là S và đáy là đường tròn ngoại tiếp tam giác ABC.
A.
B.
C.
D.
- Câu 41 : Cho hình chóp S.ABC, đáy ABC là tam giác vuông cân tại B có , SA vuông góc với đáy, góc giữa SB với đáy bằng . Tính diện tích mặt cầu tâm S và tiếp xúc với mặt phẳng (ABC).
A.
B.
C.
D.
- Câu 42 : Cho đường tròn (C) ngoại tiếp tam giác đều ABC có cạnh bằng a, chiều cao AH. Quay đường tròn (C) xung quanh trục AH ta được một mặt cầu. Tính thể tích V của khối cầu tương ứng đó.
A.
B.
C.
D.
- Câu 43 : Cho mặt phẳng (P) cắt mặt cầu S(I;R) theo giao tuyến là đường tròn (C) có bán kính r=3 cm, khoảng cách từ I đến mặt phẳng (P) bằng 2 cm. Diện tích của mặt cầu S(I;R) bằng
A.
B.
C.
D.
- Câu 44 : Cho mặt cầu (S) tâm I bán kính R. Một mặt phẳng cắt mặt cầu (S) và cách tâm I một khoảng bằng . Bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là
A.
B.
C.
D.
- Câu 45 : Hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a, cạnh bên tạo với đáy một góc . Thể tích khối cầu ngoại tiếp hình chóp S. ABCD bằng
A.
B.
C.
D.
- Câu 46 : Cho hình chóp S.ABC có cạnh bên SA vuông góc với đáy, và . Tính bán kính R của mặt cầu ngoại tiếp tứ diện S.ABC.
A.
B.
C. a
D.
- Câu 47 : Tính theo a bán kính của mặt cầu ngoại tiếp hình chóp tam giác đều S.ABC, biết các cạnh đáy có độ dài bằng a, cạnh bên .
A.
B.
C.
D.
- Câu 48 : Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=3a, BC=4a, SA=12a và SA vuông góc với đáy. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABCD.
A.
B.
C.
D. 6a
- Câu 49 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=3, AD=2. Tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho
A.
B.
C.
D.
- Câu 50 : Cho hình lăng trụ tam giác đều ABC. A'B'C' có AB=a, AA' =2a. Diện tích S của mặt cầu đi qua 6 đỉnh của hình lăng trụ đó.
A.
B.
C.
D.
- Câu 51 : Cho hình chóp S.ABC, AB=6 cm, AC=8 cm, BC=10 cm. Mặt bên SBC là tam giác vuông tại S. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC.
A.
B.
C.
D.
- Câu 52 : Cho hình chóp S.ABC, có SA vuông góc với mặt phẳng (ABC); tam giác ABC vuông tại B. Biết . Khi đó bán kính R của mặt cầu ngoại tiếp hình chóp là
A.
B. 2a
C.
D. a
- - Trắc nghiệm Toán 12 Chương 2 Bài 1 Lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 2 Hàm số lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 4 Hàm số mũ và hàm số lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 5 Phương trình mũ và phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 3 Bài 1 Nguyên hàm
- - Trắc nghiệm Toán 12 Chương 3 Bài 2 Tích phân
- - Trắc nghiệm Toán 12 Chương 3 Bài 3 Ứng dụng của tích phân trong hình học
- - Trắc nghiệm Toán 12 Bài 1 Số phức
- - Trắc nghiệm Toán 12 Bài 2 Cộng, trừ và nhân số phức