Đề thi THPT QG môn Toán năm 2019 Trường THPT Chuyê...
- Câu 1 : Tính thể tích V của khối nón chiều cao h = a và bán kính đáy \(r = a\sqrt 3 \)
A. \(V = \pi {a^3}\)
B. \(V = \frac{{\pi {a^3}}}{3}\)
C. \(V = 3\pi {a^3}\)
D. \(V = \frac{{\pi {a^3}\sqrt 3 }}{3}\)
- Câu 2 : Tìm tập nghiệm S của phương trình \({9^{{x^2} - 3x + 2}} = )
A. S = {1}
B. S = {0; 1}
C. S = {1; -2}
D. S = {1; 2}
- Câu 3 : Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC, với \(A\left( {1,1,2} \right),{\rm{ }}B\left( { - 3,0,1} \right),{\rm{ }}C\left( {8,2, - 6} \right)\). Tìm toạ độ trọng tâm G của tam giác ABC.
A. G(2,-1,1)
B. G(2,1,1)
C. G(2,1,-1)
D. G(6,3,-3)
- Câu 4 : Tính diện tích xung quanh S của khối trụ có bán kính đáy r = 4 và chiều cao h = 3.
A. S = 48\(\pi \)
B. S = 24\(\pi \)
C. S = 96\(\pi \)
D. S = 12\(\pi \)
- Câu 5 : Cho đồ thị hàm số \(y{\rm{ }} = {\rm{ }}lo{g_2}x\). Khẳng định nào sau đây sai ?
A. Đồ thị hàm số nhận trục tung là tiệm cận đứng.
B. Đồ thị hàm số cắt trục hoành tại điểm A(1; 0)
C. Đồ thị hàm số luôn nằm phía trên trục hoành.
D. Đồ thị hàm số đồng biến trên khoảng \(\left( {0. + \infty } \right).\)
- Câu 6 : Cho hình lăng trụ đều ABC.A’B’C’ có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích khối lăng trụ đó.
A. \(\frac{{{a^3}\sqrt 6 }}{{12}}\)
B. \(\frac{{{a^3}\sqrt 6 }}{{4}}\)
C. \(\frac{{{a^3}\sqrt 3 }}{{12}}\)
D. \(\frac{{{a^3}\sqrt 3 }}{{4}}\)
- Câu 7 : Hàm số \(y = \frac{1}{3}{x^3} - {x^2} - 3x + 5\) nghịch biến trên khoảng nào ?
A. (3;+∞).
B. (-∞;+∞).
C. (-∞;-1).
D. (-1;3).
- Câu 8 : Đồ thị hàm số \(y = \frac{{x - 6}}{{{x^2} - 1}}\) có mấy đường tiệm cận?
A. 1
B. 3
C. 2
D. 0
- Câu 9 : Đường cong hình bên là đồ thị của mộ hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi đó là hàm số nào?
A. \(y{\rm{ }} = {\rm{ }} - {\rm{ }}{x^3} + {\rm{ }}x{\rm{ }}--{\rm{ }}1\)
B. \(y{\rm{ }} = {\rm{ }}{x^3} + {\rm{ }}x{\rm{ }} + {\rm{ }}1.\)
C. \(y{\rm{ }} = {\rm{ }} - {\rm{ }}{x^3} + {\rm{ }}x{\rm{ }} + {\rm{ }}1.\)
D. \(y = - {x^3} + x + 1\)
- Câu 10 : Tìm họ nguyên hàm của hàm số \(f\left( x \right){\rm{ }} = {\rm{ }}{e^{3x}}.\)
A. \(\int {f(x)dx = \frac{{{e^{3x + 1}}}}{{3x + 1}}} + C\)
B. \(\int {f(x)dx = 3{e^{3x}} + C} \)
C. \(\int {f(x)dx = {e^{3x}} + C} \)
D. \(\int {f(x)dx = \frac{{{e^{3x}}}}{3} + C} \)
- Câu 11 : Cho khối chóp SABC có SA, SB, SC đôi một vuông góc và SA = a, SB = b, SC = c. Tính thể tích V của khối chóp đó theo a, b, c.
A. \(V = \frac{{abc}}{6}\)
B. \(V = \frac{{abc}}{3}\)
C. \(V = \frac{{abc}}{2}\)
D. V = abc
- Câu 12 : Tìm tập xác định D của hàm số \(y{\rm{ }} = {\rm{ }}lo{g_3}\left( {{x^2}--{\rm{ }}x{\rm{ }} - {\rm{ }}2} \right).\)
A. D = (-1; 2)
B. \(D{\rm{ }} = {\rm{ }}( - \infty ; - 1) \cup \left( {2; + {\rm{ }}\infty } \right).\)
C. \(D{\rm{ }} = {\rm{ }}\left( {2; + {\rm{ }}\infty } \right).\)
D. \(\;D{\rm{ }} = {\rm{ }}\left( { - \infty ; - 1} \right).\)
- Câu 13 : Trong không gian với hệ toạ độ Oxyz, cho mặt cầu \(\left( S \right):{\rm{ }}{x^2} + {y^2} + {z^2}--2x + 4y--4z--25 = 0\). Tìm toạ độ tâm I và bán kính R của mặt cầu (S).
A. \(I(1; - 2;2);R = \sqrt {34} \)
B. \(I( - 1;2; - 2);R = 5\)
C. \(I( - 1;4; - 4);R = \sqrt {29} \)
D. \(I(1; - 2;2);R = 6\)
- Câu 14 : Tìm họ nguyên hàm của hàm số \(f(x) = \cos x - 2x.\)
A. \(\int {f(x)dx = \sin x - {x^2} + C} \)
B. \(\int {f(x)dx = - {\mathop{\rm s}\nolimits} {\rm{inx}} - {x^2} + C} \)
C. \(\int {f(x)dx = {\mathop{\rm s}\nolimits} {\rm{inx}} - {x^2}} \)
D. \(\int {f(x)dx = - {\mathop{\rm s}\nolimits} {\rm{inx}} - {x^2}} \)
- Câu 15 : Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên:
A. x0 = 1 là điểm cực tiểu của hàm số.
B. Hàm số đồng biến trên khoảng (-1; 0) và \(\left( {1; + \infty } \right).\)
C. M(0; 2) là điểm cực tiểu của đồ thị hàm số.
D. f(-1) là điểm cực tiểu của đồ thị hàm số.
- Câu 16 : Tìm số hạng không chứa x trong khai triển của \({\left( {{x^2} - \frac{1}{x}} \right)^{12}}\)
A. -459
B. -495
C. 495
D. 459
- Câu 17 : Cho hàm số y = f(x) có đạo hàm \(f'(x) = ({e^x} + 1)({e^x} - 12)(x + 1){(x - 1)^2}\) trên R. Hỏi hàm số y = f(x) có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
- Câu 18 : Cho khối lăng trụ tam giác ABC.A'B'C' có thể tích V . Gọi M là trung điểm CC’. Mặt phẳng (MAB) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích hai phần đó (số bé chia số lớn).
A. 2/5
B. 3/5
C. 1/5
D. 1/6
- Câu 19 : Tính thể tích V của khối cầu nội tiếp hình lập phương cạnh a.
A. \(V = \frac{{\pi {a^3}}}{6}\)
B. \(V = \frac{{4\pi {a^3}}}{3}\)
C. \(V = \frac{{\pi {a^3}}}{3}\)
D. \(V = \frac{{\pi {a^3}}}{2}\)
- Câu 20 : Cho khối chóp tam giác đều SABCD có cạnh đáy là a, các mặt bên tạo với đáy một góc 600. Tính thể tích khối chóp đó
A. \(V = \frac{{{a^3}\sqrt 3 }}{2}\)
B. \(V = \frac{{{a^3}\sqrt 3 }}{{12}}\)
C. \(V = \frac{{{a^3}\sqrt 3 }}{6}\)
D. \(V = \frac{{{a^3}\sqrt 3 }}{3}\)
- Câu 21 : Cho hàm số f(x) thoả mãn \(f'(x) = (x + 1){e^x}\) và f(0) = 1 . Tính f(2)
A. \(f(2) = 4{e^2} + 1\)
B. \(f(2) = 2{e^2} + 1\)
C. \(f(2) = 3{e^2} + 1\)
D. \(f(2) = {e^2} + 1\)
- Câu 22 : Viết phương trình tiếp tuyến của đồ thị hàm số\(y = {x^3} - 3{x^2} + 1\) biết nó song song với đường thẳng y = 9x + 6
A. y = 9x + 26;y = 9x - 6
B. y = 9x - 26
C. y = 9x + 26
D. y = 9x - 26;y = 9x + 6
- Câu 23 : Tính độ dài đường cao của tứ diện đều có cạnh a.
A. \(\frac{{a\sqrt 2 }}{3}\)
B. \(\frac{{a\sqrt 6 }}{9}\)
C. \(\frac{{a\sqrt 6 }}{3}\)
D. \(\frac{{a\sqrt 6 }}{6}\)
- Câu 24 : Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx + 2\) đồng biến trên R.
A. m ≥ 3.
B. m > 3
C. m < 3
D. m ≤ 3.
- Câu 25 : Cho khối chóp SABC có \(SA \bot (ABC),SA = a,AB = a,AC = 2a,\angle BAC = {120^0}\).Tính thể tích khối chóp S.ABC .
A. \(V = \frac{{{a^3}\sqrt 3 }}{3}\)
B. \(V = {a^3}\sqrt 3 \)
C. \(V = \frac{{{a^3}\sqrt 3 }}{6}\)
D. \(V = \frac{{{a^3}\sqrt 3 }}{2}\)
- Câu 26 : Cho tam giác ABC vuông cân tại A, đường cao AH = 4. Tính diện tích xung quang Sxq của hình nón nhận được khi quay tam giác ABC quanh trục AH.
A. \({S_{xq}} = 4\sqrt 2 \pi \)
B. \({S_{xq}} = 16\sqrt 2 \pi \)
C. \({S_{xq}} = 8\sqrt 2 \pi \)
D. \({S_{xq}} = 32\sqrt 2 \pi \)
- Câu 27 : Tính đạo hàm của hàm số \(y = \frac{{x + 1}}{{\ln x}}(x > 0,x \ne 1)\)
A. \(y' = \frac{{\ln x - x - 1}}{{x{{(\ln x)}^2}}}\)
B. \(y' = \frac{{x\ln x - x - 1}}{{x{{(\ln x)}^2}}}\)
C. \(y' = \frac{{\ln x - x - 1}}{{{{(\ln x)}^2}}}\)
D. \(y' = \frac{{x\ln x - x - 1}}{{x\ln x}}\)
- Câu 28 : Phương trình \({\mathop{\rm s}\nolimits} {\rm{i}}{{\rm{n}}^2}x + \sqrt 3 \sin x\cos x = 1\) có bao nhiêu nghiệm thuộc \(\left[ {0;3\pi } \right].\)
A. 7
B. 6
C. 4
D. 5
- Câu 29 : Việt Nam là quốc gia nằm ở phía Đông bán đảo Đông Dương thuộc khu vực Đông Nam Á. Với dân số ước tính 93,7 triệu dân vào đầu năm 2018, Việt Nam là quốc gia đông dân thứ 15 trên thế giới và là quốc gia đông dân thứ 8 Châu Á, tỉ lệ tăng dân số hàng năm là 1,2%. Giả sử tỉ lệ tăng dân số từ năm 2018 đến năm 2030 không thay đổi thì dân số nước ta đầu năm 2030 khoảng bao nhiêu:
A. 118,12 triệu dân.
B. 106,12 triệu dân.
C. 128,12 triệu dân.
D. 108,12 triệu dân.
- Câu 30 : Dãy số nào là cấp số cộng?
A. \({u_n} = n + {2^n}(n \in N*)\)
B. \({u_n} = 3n + 1(n \in N*)\)
C. \({u_n} = {3^n}(n \in N*)\)
D. \({u_n} = \frac{{3n + 1}}{{n + 2}}(n \in N*)\)
- Câu 31 : Tìm nguyên hàm \(\int {\frac{1}{{x\sqrt {\ln x + 1} }}} dx\)
A. \(\frac{2}{3}\sqrt {{{(\ln x + 1)}^3}} + C\)
B. \(\sqrt {\ln x + 1} + C\)
C. \(\frac{1}{2}\sqrt {\ln x + 1} + C\)
D. \(2\sqrt {\ln x + 1} + C\)
- Câu 32 : Trong không gian với hệ toạ độ Oxyz cho hai vectơ \(\overrightarrow a ( - 2; - 3;1)\) và \(\overrightarrow b (1;0;1)\).Tính \(\cos (\overrightarrow a ;\overrightarrow b )\)
A. \(\cos (\overrightarrow a ;\overrightarrow b ) = \frac{{ - 1}}{{2\sqrt 7 }}\)
B. \(\cos (\overrightarrow a ;\overrightarrow b ) = \frac{1}{{2\sqrt 7 }}\)
C. \(\cos (\overrightarrow a ;\overrightarrow b ) = \frac{{ - 3}}{{2\sqrt 7 }}\)
D. \(\cos (\overrightarrow a ;\overrightarrow b ) = \frac{3}{{2\sqrt 7 }}\)
- Câu 33 : rong không gian với hệ toạ độ Oxyz Cho tam giác ABC với \(A\left( {1;2;1} \right);B\left( { - 3;0;3} \right);C\left( {2;4; - 1} \right)\) . Tìm toạ độ điểm D sao cho tứ giác ABCD là hình bình hành ?
A. D(6;-6;3)
B. D(6;6;3)
C. D(6;-6;-3)
D. D(6;6;-3)
- Câu 34 : Gọi M, m lần lượt là giá trị lớn nhát và giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} + x + 3}}{{x - 2}}\) trên [-2;1] . Tính T = M + 2m
A. \(T = - \frac{{25}}{2}\)
B. T = -11
C. T = -7
D. T = -10
- Câu 35 : Biết \(\int {\frac{{x + 1}}{{(x - 1)(x - 2)}}dx = a\ln \left| {x - 1} \right| + b\ln \left| {x - 2} \right| + C(a,b \in R)} \). Tính giá trị biểu thức a + b
A. a + b = 1
B. a + b = 5
C. a + b = -5
D. a + b = -1
- Câu 36 : Tính tổng tất cả các giá trị của m biết đồ thị hàm số \(y = {x^3} - 2m{x^2} + (m + 3)x + 4\) và đường thẳng y = x + 4 cắt nhau tại 3 điểm phân biệt A(0;4), B, C sao cho diện tích tam giác IBC bằng \(8\sqrt 2 \) với I(1; 3)
A. 3
B. 8
C. 1
D. 5
- Câu 37 : Gọi S là tập hợp tất cả các giá trị của m để đồ thị hàm số \(y = {x^4} - 2m{x^2} + 2m + {m^4}\) có 3 điểm cực trị đồng thời các điểm cực trị của đồ thị lập thành tam giác có bán kính đường tròn ngoại tiếp bằng 1. Tính tổng các phần tử của S.
A. \(\frac{{1 + \sqrt 5 }}{2}\)
B. \(\frac{{2 + \sqrt 5 }}{2}\)
C. 0
D. \(\frac{{3 + \sqrt 5 }}{2}\)
- Câu 38 : Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D và AB = AD = a, DC = 2a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H là hình chiếu vuông góc của D trên AC và M là trung điểm HC. Tính diện tích mặt cầu ngoại tiếp chop S.BDM theo a.
A. \(\frac{{7\pi {a^2}}}{9}\)
B. \(\frac{{13\pi {a^2}}}{9}\)
C. \(\frac{{13\pi {a^2}}}{3}\)
D. \(\frac{{7\pi {a^2}}}{3}\)
- Câu 39 : Trong không gian Oxyz, cho tam giác ABC với \(A\left( {1;2;0} \right);{\rm{ }}B\left( {3;2; - 1} \right);{\rm{ }}C\left( { - 1; - 4;4} \right)\) . Tính tập hợp tất cả các điểm M sao cho \(M{A^2} + M{B^2} + M{C^2} = 52\)
A. Mặt cầu tâm I(-1;0;-1) bán kính r = 2
B. Mặt cầu tâm I(-1;0;-1) bán kính \(r = \sqrt 2 \)
C. Mặt cầu tâm I(1;0;1) bán kính \(r = \sqrt 2 \)
D. Mặt cầu tâm I(1;0;1) bán kính r = 2
- Câu 40 : Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị hàm số y =f’(x) như hình bên. Hàm số y = f(3 – x) đồng biến trên khoảng nào dưới đây?
A. (-2; -1)
B. (-1; 2)
C. \(\left( {2; + \infty } \right)\)
D. \(\left( { - \infty ; - 1} \right)\)
- Câu 41 : Trong mặt phẳng (P) cho hình vuông ABCD cạnh a. Trên đường thẳng qua A và vuông goác vói mặt phẳng (P) lấy điểm S sao cho SA = a. Mặt cầu đường kính AC cắt các đường thẳng SB, SC, SD lần lượt tại M ≠ B, N ≠ C, P ≠ D. Tính diện tích rứ giác AMNP ?
A. \(\frac{{{a^2}\sqrt 6 }}{2}\)
B. \(\frac{{{a^2}\sqrt 2 }}{12}\)
C. \(\frac{{{a^2}\sqrt 2 }}{4}\)
D. \(\frac{{{a^2}\sqrt 3 }}{6}\)
- Câu 42 : Gọi K là tập nghiệm của bất phương trình \({7^{2x + \sqrt {x + 1} }} - {7^{2 + \sqrt { + 1} }} + 2018x \le 2018\). Biết rẳng tập hợp tất cả các giá trị của tham số m sao cho hàm số \(y = 2{x^3} - 3(m + 2){x^2} + 6(2m + 3)x - 3m + 5\) đồng biến trên K là với a, b là các số thực. Tính S = a + b
A. S = 14
B. S = 8
C. S = 10
D. S = 11
- Câu 43 : Cho tứ diện S.ABC có ABC là tam giác nhọn. Hình chiếu vương góc của S lên mặt phẳng (ABC) trùng với trực râm của tam giác ABC. Khẳng định nào dưới đây là sai khi nói về tứ diện đã cho ?
A. Các đoạn thẳng nối các trung điểm các cặp cạnh đối của tứ diện bằng nhau.
B. Tổng các bình phương của mỗi cặp cạnh đối của tứ diện bằng nhau.
C. Tồn tại một đỉnh của tứ diện có ba cạnh xuất phát từ đỉnh có đôi một vuông góc với nhau.
D. Tứ diện có các cặp cạnh đối vuông góc với nhau.
- Câu 44 : Cho hàm số y = f(x) lien tục trên R thoả mãn \(f'(x) + 2x.f(x) = {e^{ - {x^2}}}\forall x \in R\) và f(0) = 0. Tính f(1)
A. \(f(1) = {e^2}\)
B. \(f(1) = \frac{{ - 1}}{e}\)
C. \(f(1) = \frac{1}{{{e^2}}}\)
D. \(f(1) = \frac{1}{e}\)
- Câu 45 : Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a. Biết rằng ASB = ASD = 900, mặt phẳng chứa AB và vuông góc với (ABCD) cắt SD tại N. Tìm giá trị lớn nhất của thể tích tứ diện DABN.
A. \(\frac{{2{a^3}}}{3}\)
B. \(\frac{{2\sqrt 3 {a^3}}}{3}\)
C. \(\frac{{4{a^3}}}{3}\)
D. \(\frac{{4\sqrt 3 {a^3}}}{3}\)
- Câu 46 : Cho hàm số \(y = {x^3} - 3(m + 3){x^2} + 3\) có đồ thị (C). Tìm tất cả các giá trị của m sao cho qua điểm A(-1;1) kẻ được đúng 2 tiếp tuyến đến (C), Một tiếp tuyến là \({\Delta _1}:y = - 1\) và tiếp tuyến thứ 2 là thoả mãn tiếp xúc với (C) tại N đồng thời cắt (C) tại P (khác N) có hoành độ bằng 3.
A. Không tồn tại m thoả mãn
B. m = 2
C. m = 0; m = -2
D. m = -2
- Câu 47 : Cho bất phương trình \(m{.9^{2{x^2} - x}} - (2m + 1){6^{2{x^2} - x}} + m{a^{2{x^2} - x}} \le 0\) . Tìm m để bất phương trinh nghiệm đúng \(\forall x \ge \frac{1}{2}\)
A. \(m < \frac{3}{2}\)
B. \(m \le \frac{3}{2}\)
C. \(m \le 0\)
D. m < 0
- Câu 48 : Cho hình vuông ABCD cạnh bằng 1, điểm M là trung điểm CD. Cho hình vuông ABCD (tất cả các điểm trong của nó) quay quanh trục là đường thảng AM ta được một khối tròn xoay. Tinh thể tích của khối tròn xoay đó.
A. \(\frac{{7\sqrt {10} }}{{15}}\pi \)
B. \(\frac{{7\sqrt 5 }}{{30}}\pi \)
C. \(\frac{{7\sqrt 2 }}{{30}}\pi \)
D. \(\frac{{7\sqrt 2 }}{{15}}\pi \)
- Câu 49 : Trong truyện cổ tích Cây tre trăm đốt (các đốt được tính từ 1 đến 100), khi không vác được cây tre dài tận 100 đốt như vậy về nhà, anh Khoai ngồi khóc, Bụt liền hiện lên, bày cho anh ta : “Con hãy hô câu thần chú Xác suất, xác suất thì cây tre sẽ rời ra, con sẽ mang được về nhà”. Biết rằng cây tre 100 đốt được tách ra một cách ngẫu nhiên thành các đoạn ngắn có chiều dài là 2 đốt (có thể chỉ có một loại). Xác suất để có dố đoạn 3 đốt nhiều hơn số đoạn 5 đốt đúng 1 đoạn gần với giá trị nào trong các giá trị dưới đây ?
A. 0,142.
B. 0,152
C. 0,132.
D. 0,122.
- Câu 50 : Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ.
A. 6
B. 8
C. 7
D. 9
- - Trắc nghiệm Toán 12 Chương 2 Bài 1 Lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 2 Hàm số lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 4 Hàm số mũ và hàm số lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 5 Phương trình mũ và phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 3 Bài 1 Nguyên hàm
- - Trắc nghiệm Toán 12 Chương 3 Bài 2 Tích phân
- - Trắc nghiệm Toán 12 Chương 3 Bài 3 Ứng dụng của tích phân trong hình học
- - Trắc nghiệm Toán 12 Bài 1 Số phức
- - Trắc nghiệm Toán 12 Bài 2 Cộng, trừ và nhân số phức