Đăng ký

Câu 24 trang 205 SGK Đại số và Giải tích 11 Nâng cao

Đề bài

Viết phương trình tiếp tuyến của đồ thị hàm số

a. \(y = {{x - 1} \over {x + 1}}\), biết hoành độ tiếp điểm là x0 = 0

b. \(y = \sqrt {x + 2} ,\) biết tung độ tiếp điểm là y0 = 2.

Hướng dẫn giải

a.

\(\eqalign{  & f\left( x \right) = {{x - 1} \over {x + 1}}  \cr  & {x_0} = 0 \Rightarrow {y_0} = f\left( 0 \right) =  - 1  \cr  & f'\left( x \right) = {{\left| {\matrix{   1 & { - 1}  \cr   1 & 1  \cr  } } \right|} \over {{{\left( {x + 1} \right)}^2}}} = {2 \over {{{\left( {x + 1} \right)}^2}}} \Rightarrow f\left( 0 \right) = 2 \cr} \)

Phương trình tiếp tuyến cần tìm là :

\(y - \left( { - 1} \right) = 2\left( {x - 0} \right) \Leftrightarrow y = 2x - 1\)

b.

\(\eqalign{  & f\left( x \right) = \sqrt {x + 2} ;f\left( {{x_0}} \right) = 2 \cr&\Leftrightarrow \sqrt {{x_0} + 2}  = 2 \Leftrightarrow {x_0} = 2  \cr  & f'\left( x \right) = {1 \over {2\sqrt {x + 2} }} \Rightarrow f'\left( 2 \right) = {1 \over 4} \cr} \)

Phương trình tiếp tuyến cần tìm là :

\(y - 2 = {1 \over 4}\left( {x - 2} \right) \Leftrightarrow y = {{x + 6} \over 4}\)