Đăng ký

Bài 32 trang 80 SGK Toán 9 tập 2

Đề bài

Cho đường tròn tâm \(O\) đường kính \(AB\). Một tiếp tuyến của đường tròn tại \(P\) cắt đường thẳng \(AB\) tại \(T\) (điểm \(B\) nằm giữa \(O\) và \(T\))

Chứng minh: \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\).

Hướng dẫn giải

+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.

Lời giải chi tiết

              

Ta có \(\widehat {TPB}\) là góc tạo bởi tiếp tuyến \(PT\) và dây cung \(PB\) của đường tròn \((O)\) nên  \(\widehat {TPB}=\frac{1}{2}sđ\overparen{BP}\)(cung nhỏ \(\overparen{BP}\))   (1)

Lại có: \(\widehat {BOP}=sđ\overparen{BP}\)   (góc ở tâm chắn cung \(\overparen{BP}\)).                   (2)

Từ (1) và (2) suy ra  \(\widehat {BOP} = 2.\widehat {TPB}\).

Trong tam giác vuông \(TPO\) ( \(OP \bot TP\) vì \(TP\) là tiếp tuyến) ta có \(\widehat {BOP} + \widehat {BTP}=90^0.\)

hay \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\).