Đăng ký

Bài 3 trang 92 SGK Đại số và Giải tích 11

Đề bài

Dãy số \(u_n\) cho bởi: \(u_1= 3\); \(u_{n+1}\)= \( \sqrt{1+u^{2}_{n}}\),\( n ≥ 1\).

a) Viết năm số hạng đầu của dãy số.

b) Dự đoán công thức số hạng tổng quát và chứng minh công thức đó bằng phương pháp quy nạp

Hướng dẫn giải

a) Để viết năm số hạng đầu tiên của dãy số ta tính \(u_n\) lần lượt tại \(n=1;2;3;4;5\).

b) Dựa vào các giá trị \(u_1;u_2;u_3;u_4;u_5\) dự đoán công thức tổng \(u_n\).

Sử dụng phương pháp quy nạp toán học.

Bước 1: Chứng minh đảng thức đã cho đúng với \(n=1\).

Bước 2: Giả sử đẳng thức đúng đến \(n=k \ge 1\) (giả thiết quy nạp). Chứng minh đẳng thức đúng đến \(n=k+1\).

Lời giải chi tiết

a) Năm số hạng đầu của dãy số là \(u_1=3; u_2=\sqrt{10}; u_3=\sqrt{11}; u_4=\sqrt{12}; u_5=\sqrt{13}\).

b) Ta có:  \(u_1= 3 = \sqrt9 = \sqrt{1 + 8}\)

                \( u_2= \sqrt{10} = \sqrt{2 + 8}\)

                 \(u_3= \sqrt{11} = \sqrt{3 + 8}\)

                 \(u_4= \sqrt{12} = \sqrt{4 + 8}\)

                   ...........

Từ trên ta dự đoán \(u_n= \sqrt{n + 8}\), với \(n \in {\mathbb N}^*\)   (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với \(n = 1\), rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với \(n = k ≥ 1\), tức là có  \(u_k = \sqrt{k + 8}\) với \(k ≥ 1\), ta cần chứng minh \(u_{k+1}=\sqrt{(k+1)+8}\)

Theo công thức dãy số, ta có:

\(u_{k+1}\)=  \( \sqrt{1+u^{2}_{k}}=\sqrt{1+(\sqrt{k+8})^{2}}=\sqrt{(k+1)+8}\).

Như vậy công thức (1) đúng với \(n = k + 1\).

Vậy công thức (1) được chứng minh.

 

     

shoppe