Trắc nghiệm Ôn tập chương có đáp án !!
- Câu 1 : Cho tứ diện ABCD và G là trọng tâm tam giác ACD. Mặt phẳng (P) qua BG và song song với CD chia khối tứ diện thành hai phần. Tính tỉ số thể tích (số bé chia số lớn) của hai phần đó là:
A.
B.
C.
D.
- Câu 2 : Cho hình chóp S.ABC có AB = 5cm, BC = 6cm, CA = 7cm. Hình chiếu vuông góc của S xuống mặt phẳng (ABC) nằm bên trong tam giác ABC. Các mặt phẳng (SAB), (SBC), (SCA) đều tạo với đáy một góc . Gọi AD, BE, CF là các đường phân giác của tam giác ABC với D ∈ BC, E ∈ AC, F ∈ AB .Thể tích S.DEF gần nhất với số nào sau đây?
A.
B.
C.
D.
- Câu 3 : Khối chóp S.ABCD có đáy là hình thoi cạnh a, SA=SB=SC=a. Cạnh SD thay đổi. Thể tích khối chóp S.ABCD lớn nhất khi độ dài cạnh SD là:
A.
B.
C.
D.
- Câu 4 : Cho khối lăng trụ ABC.A’B’C’, khoảng cách từ C đến đường thẳng BB’ bằng , khoảng cách từ A đến các đường thẳng BB’ và CC’ lần lượt bằng 1 và 2, hình chiếu vuông góc của A lên mặt phẳng (A’B’C’) là trung điểm M của B’C’ và . Thể tích của khối lăng trụ đã cho bằng:
A.
B.
C.
D.
- Câu 5 : Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng (AMN) luôn vuông góc với mặt phẳng (BCD). Gọi lần lượt là giá trị lớn nhất và nhỏ nhất của thể tích khối tứ diện ABMN. Tính
A.
B.
C.
D.
- Câu 6 : Cho lăng trụ tam giác đều ABC.A’B’C’. Trên A’B’ kéo dài lấy điểm M sao cho . Gọi N, P lần lượt là trung điểm của A’C’ và B’B. Mặt phẳng (MNP) chia khối lăng trụ ABC.A’B’C’ thành hai khối đa diện trong đó khối đa diện chứ đỉnh A’ có thể tích và khối đa diện chứ đỉnh C’ có thể tích . Tính
A.
B.
C.
D.
- Câu 7 : Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông, AB=BC=a. Biết rằng góc giữa hai mặt phẳng (ACC’) và (AB’C’) bằng (tham khảo hình vẽ bên). Thể tích của khối chóp B'.ACC'A' bằng:
A.
B.
C.
D.
- Câu 8 : Cho hình chóp SABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC), SAB là tam giác đều cạnh , đường thẳng SC tạo với mặt phẳng (ABC) góc . Thể tích của khối chóp SABC bằng:
A.
B.
C.
D.
- Câu 9 : Cho hình chóp đều S.ABCD có đáy là hình vuông cạnh a, M là trung điểm của SA. Biết mặt phẳng (MCD) vuông góc với mặt phẳng (SAB). Thể tích khối chóp S.ABCD là:
A.
B.
C.
D.
- Câu 10 : Cho khối chóp tứ giác S.ABCD. Mặt phẳng đi qua trọng tâm các tam giác SAB, SAC, SAD chia khối chóp này thành hai phần có thể tích là . Tính tỉ lệ ?
A.
B.
C.
D.
- Câu 11 : Xét khối tứ diện ABCD có cạnh AD, BC thỏa mãn và các cạnh còn lại đều bằng 5. Biết thể tích của khối tứ diện ABCD đạt giá trị lớn nhất có dạng . Khi đó, x, y thỏa mãn bất đẳng thức nào dưới đây?
A.
B.
C.
D.
- Câu 12 : Cho khối chóp S.ABCD có điểm M và N lần lượt nằm trên các cạnh SA và SB sao cho . Mặt phẳng qua hai điểm M, N và song song SC chia khối chóp thành 2 khối đa diện. Tính tỉ số thể tích của khối đa diện có thể tích lớn hơn so với thể tích khối chóp S.ABC
A.
B.
C.
D.
- Câu 13 : Cho hình chóp tứ giác đều S.ABCD, đường cao SO. Biết rằng trong các thiết diện của hình chóp cắt bởi các mặt phẳng chứa SO, thiết diện có diện tích lớn nhất là tam giác đều cạnh bằng a, tính thể tích khối chóp đã cho.
A.
B.
C.
D.
- Câu 14 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA = a và vuông góc với đáy. Mặt phẳng qua A vuông góc với SC cắt hình chóp theo một thiết diện. Tính diện tích thiết diện đó.
A.
B.
C.
D.
- Câu 15 : Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a, hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) nằm trong tứ giác ABCD, các cạnh xuất phát từ đỉnh A của hình hộp tạo với nhau một góc . Tính thể tích khối hộp ABCD.A'B'C'D'
A.
B.
C.
D.
- Câu 16 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA=SB=SC=a. Thể tích lớn nhất của khối chóp S.ABCD là:
A.
B.
C.
D.
- Câu 17 : Cho hình chóp S.ABC có AB=3, BC=4, AC=5. Tính thể tích khối chóp S.ABC biết rằng các mặt bên tạo với đáy một góc và hình chiếu vuông góc của S trên (ABC) nằm trong tam giác ABC.
A.
B.
C.
D.
- Câu 18 : Cho hình hộp ABCD.A’B’C’D’. Gọi E, F lần lượt là trung điểm của B’C’ và C’D’. Mặt phẳng (AEF) chia hình hộp thành hai hình đa diện (H) và (H’) trong đó (H) là hình đa diện chứa đỉnh A’. Tính tỉ số thể tích đa diện (H) và thể tích hình đa diện (H’).
A.
B.
C.
D.
Xem thêm
- - Trắc nghiệm Toán 12 Chương 2 Bài 1 Lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 2 Hàm số lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 4 Hàm số mũ và hàm số lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 5 Phương trình mũ và phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 3 Bài 1 Nguyên hàm
- - Trắc nghiệm Toán 12 Chương 3 Bài 2 Tích phân
- - Trắc nghiệm Toán 12 Chương 3 Bài 3 Ứng dụng của tích phân trong hình học
- - Trắc nghiệm Toán 12 Bài 1 Số phức
- - Trắc nghiệm Toán 12 Bài 2 Cộng, trừ và nhân số phức