Giải SBT Toán 12 Bài 2: Mặt cầu !!
- Câu 1 : Trong mặt phẳng () cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với () ta lấy một điểm S tùy ý, dựng mặt phẳng () đi qua A và vuông góc với đường thẳng SC. Mặt phẳng () cắt SB, SC, SD lần lượt tại B’ , C’, D’. Chứng minh rằng các điểm A, B, C, D, B’, C’ , D’ luôn luôn thuộc một mặt cầu cố định.
- Câu 2 : Trong mặt phẳng () cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với () ta lấy một điểm S tùy ý, dựng mặt phẳng () đi qua A và vuông góc với đường thẳng SC. Mặt phẳng () cắt SB, SC, SD lần lượt tại B’ , C’, D’. Tính diện tích của mặt cầu đó và tính thể tích khối cầu được tạo thành.
- Câu 3 : Hình chóp tam giác S.ABC có SA = SB = SC = a và có chiều cao bằng h. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp. Tính diện tích của mặt cầu đó.
- Câu 4 : Cho hai đường thẳng chéo nhau và ′ có AA’ là đoạn vuông góc chung, trong đó A và A′ ′. Gọi () là mặt phẳng chứa AA’ và vuông góc với ′ và cho biết AA’ = a. Một đường thẳng thay đổi luôn luôn song song với mặt phẳng () lần lượt cắt và ′ tại M và M’ . Hình chiếu vuông góc của M trên mặt phẳng () là . Xác định tâm O và bán kính r của mặt cầu đi qua 5 điểm A, A’ , M , M’, . Tính diện tích của mặt cầu tâm O nói trên theo a, x = A’M’ và góc = (, ′)
- Câu 5 : Cho hai đường thẳng chéo nhau và ′ có AA’ là đoạn vuông góc chung, trong đó A và A′ ′. Gọi () là mặt phẳng chứa AA’ và vuông góc với ′ và cho biết AA’ = a. Một đường thẳng thay đổi luôn luôn song song với mặt phẳng () lần lượt cắt và ′ tại M và M’ . Hình chiếu vuông góc của M trên mặt phẳng () là . Chứng minh rằng khi x thay đổi mặt cầu tâm O luôn luôn chứa một đường tròn cố định.
- Câu 6 : Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau: BAC = 90
- Câu 7 : Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau: BAC = 60 và b = c
- Câu 8 : Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau: BAC = 120 và b = c
- Câu 9 : Cho mặt cầu tâm O bán kính r. Gọi () là mặt phẳng cách tâm O một khoảng h (0 < h < r) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng () cắt mặt cầu tại một điểm B. Gọi CD là đường kính di động của (C). Chứng minh các tổng và có giá trị không đổi
- Câu 10 : Cho mặt cầu tâm O bán kính r. Gọi () là mặt phẳng cách tâm O một khoảng h (0 < h < r) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng () cắt mặt cầu tại một điểm B. Gọi CD là đường kính di động của (C). Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất?
- Câu 11 : Cho mặt cầu tâm O bán kính r. Gọi () là mặt phẳng cách tâm O một khoảng h (0 < h < r) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng () cắt mặt cầu tại một điểm B. Gọi CD là đường kính di động của (C). Tìm tập hợp các điểm H, hình chiếu của B trên CD khi CD chuyển động trên đường tròn (C).
- Câu 12 : Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng a. Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB , SC tại trung điểm của mỗi cạnh. Chứng minh rằng mặt cầu đó đi qua trung điểm của AB và AC.
- Câu 13 : Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng a. Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB , SC tại trung điểm của mỗi cạnh. Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D. Tính độ dài của AD và SD.
- Câu 14 : Chứng minh rằng nếu có một mặt cầu tiếp xúc với 6 cạnh của một hình tứ diện thì hình tứ diện đó có tổng các cặp cạnh đối diện bằng nhau.
- Câu 15 : Hình tứ diện đều ABCD có cạnh bằng a và có đường cao AH. Gọi O là trung điểm của AH. Xác định tâm và bán kính của mặt cầu ngoại tiếp tứ diện OBCD.
- Câu 16 : Hình chóp S.ABCD có SA = a là chiều cao của hình chóp và đáy ABCD là hình thang vuông tại A và B có AB = BC = a và AD = 2a. Gọi E là trung điểm của cạnh AD. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.CDE
- Câu 17 : Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi () là mặt phẳng đi qua A sao cho góc giữa OA và () bằng 30. Tính diện tích của thiết diện tạo bởi () và hình cầu.
- Câu 18 : Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi () là mặt phẳng đi qua A sao cho góc giữa OA và () bằng 30. Đường thẳng đi qua A vuông góc với mặt phẳng () cắt mặt cầu tại B. Tính độ dài đoạn AB.
- Câu 19 : Cho hình cầu đường kính AA’ = 2r. Gọi H là một điểm trên đoạn AA’ sao cho AH = 4r/3. Mặt phẳng () qua H và vuông góc với AA’ cắt hình cầu theo đường tròn (C). Tính diện tích của hình tròn (C) .
- Câu 20 : Cho hình cầu đường kính AA’ = 2r. Gọi H là một điểm trên đoạn AA’ sao cho AH = 4r/3. Mặt phẳng () qua H và vuông góc với AA’ cắt hình cầu theo đường tròn (C). Gọi BCD là tam giác đều nội tiếp trong (C), hãy tính thể tích hình chóp A.BCD và hình chóp A’.BCD.
Xem thêm
- - Trắc nghiệm Toán 12 Chương 2 Bài 1 Lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 2 Hàm số lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 4 Hàm số mũ và hàm số lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 5 Phương trình mũ và phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 3 Bài 1 Nguyên hàm
- - Trắc nghiệm Toán 12 Chương 3 Bài 2 Tích phân
- - Trắc nghiệm Toán 12 Chương 3 Bài 3 Ứng dụng của tích phân trong hình học
- - Trắc nghiệm Toán 12 Bài 1 Số phức
- - Trắc nghiệm Toán 12 Bài 2 Cộng, trừ và nhân số phức