Đăng ký

Câu hỏi 1 trang 101 SGK Giải tích 12

Đề bài

Kí hiệu T là hình thang vuông giới hạn bởi đường thẳng y = 2x + 1, trục hoành và hai đường thẳng x = 1, x = t (1 ≥ t ≥ 5) (H.45).

1. Tính diện tích S của hình T khi t = 5 (H.46).

2. Tính diện tích S(t) của hình T khi x ∈ [1; 5].

Hướng dẫn giải

1. Kí hiệu A là điểm có tọa độ (1,0), D là điểm có tọa độ (5,0). B, C lần lượt là giao điểm của đường thẳng x = 1 và x = 5 với đường thẳng y = 2x + 1.

 

- Khi đó B và C sẽ có tọa độ lần lượt là (1,3) và (5,11).

- Ta có: AB = 3, CD = 11, AD = 4. Diện tích hình thang:

\(ABCD = {{(AB + CD).AD} \over 2} = 28\)

2. Kí hiệu A là điểm có tọa độ (1,0), D là điểm có tọa độ (5,0). B, C lần lượt là giao điểm của đường thẳng x = 1 và x = 5 với đường thẳng y = 2x + 1.

- Khi đó ta có B (1,3) và C(t, 2t + 1).

- Ta có AB = 3, AD = t – 1, CD = 2t + 1.

- Khi đó diện tích hình thang:

\(ABCD = {{(AB + CD).AD} \over 2} = {{(3 + 2t + 1).(t - 1)} \over 2} = {t^2} + t - 2\)