Bài 6 trang 98 SGK Hình học 11
Đề bài
Trong không gian cho hai hình vuông \(ABCD\) và \(ABC'D'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm \(O\) và \(O'\). Chứng minh rằng \(AB ⊥ OO'\) và tứ giác \(CDD'C'\) là hình chữ nhật.
Hướng dẫn giải
a) Chứng minh \(\overrightarrow {AB} .\overrightarrow {OO'} = 0\), sử dụng công thức \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \widehat {\left( {\overrightarrow a ;\overrightarrow b } \right)}\)
b) Chứng minh CDD'C' là tứ giác có một cạnh cạnh đối song song và bằng nhau và có 1 góc vuông.
Lời giải chi tiết
\(\overrightarrow{AB}.\overrightarrow{OO'}=\overrightarrow{AB}.(\overrightarrow{AO'}-\overrightarrow{AO})\)
\(=\overrightarrow{AB}.\overrightarrow{AO'}-\overrightarrow{AB}.\overrightarrow{AO}\)
\(= AB.AO'.\cos45^{0} - AB.AO.\cos45^{0}\)
\(= 0\).
Vậy \(AB ⊥ OO'\).
\(\left\{ \begin{array}{l}CD//C'D'\\CD = C'D'\end{array} \right. \Rightarrow CDD'C'\) là hình bình hành (Tứ giác có một cặp cạnh đối song song và bằng nhau).
\(\left\{ \begin{array}{l}AB \bot BC\\AB \bot BC'\end{array} \right. \Rightarrow AB \bot \left( {BCC'} \right) \Rightarrow AB \bot CC'\)
Mà \(CD // AB \Rightarrow CD ⊥ CC' \Rightarrow CDD'C'\) là hình chữ nhật (Hình bình hành có 1 góc vuông).