Bài 5 trang 83 SGK Đại số và Giải tích 11
Đề bài
Chứng minh rằng số đường chéo của một đa giác lồi \(n\) cạnh là \({{n(n - 3)} \over 2}\)
Hướng dẫn giải
Ta chứng minh khẳng định đúng với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).
Sử dụng phương pháp quy nạp toán học để chứng minh.
Lời giải chi tiết
Ta chứng minh khẳng định đúng với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).
*) Với \(n = 4\), ta có tứ giác nên nó có hai đường chéo.
Mặt khác thay \(n = 4\) vào công thức, ta có số đường chéo của tứ giác theo công thức là: \({{4(4 - 3)} \over 2} = 2\)
Vậy khẳng định đúng với \(n= 4\).
*) Giả sử khẳng định đúng với \(n = k ≥ 4\), tức là đa giác lồi \(k\) cạnh có số đường chéo là \({{k(k - 3)} \over 2}\)
Vậy số đường chéo của đa giác \(k + 1\) cạnh là
\({{k(k - 3)} \over 2}+ k - 2 + 1 ={{{k^2} - k - 2} \over 2} = {{(k + 1)((k + 1) - 3)} \over 2}\)
Như vậy, khẳng định cũng đúng với đa giác \(k + 1\) cạnh
Vậy bài toán đã được chứng minh.