Đăng ký

Bài 33 trang 66 SGK Hình học 10 nâng cao

Đề bài

Bài 33.

Hướng dẫn giải

tam giác \(ABC\), biết

a) \(c = 14,\,\widehat A = {60^0},\,\widehat B = {40^0}\);                                

b) \(b = 4,5,\,\widehat A = {30^0},\,\widehat C = {75^0}\);

c) \(c = 35,\,\widehat A = {40^0},\,\widehat C = {120^0}\);                              

d) \(a = 137,5;\;\widehat B = {83^0},\,\widehat C = {57^0}\).

Hướng dẫn trả lời

a)  Ta có \(\widehat C = {180^0} - {60^0} - {40^0} = {80^0}\)

Áp dụng định lí sin :  

\(\eqalign{
& \,\,\,\,\,\,{a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = {{14} \over {{\mathop{\rm s}\nolimits} {\rm{in8}}{{\rm{0}}^0}}}\,\,\,\, \Rightarrow \,\,a = {{14} \over {{\mathop{\rm s}\nolimits} {\rm{in8}}{{\rm{0}}^0}}}.\sin {60^0} \approx 12,3 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b = {{14} \over {{\mathop{\rm s}\nolimits} {\rm{in8}}{{\rm{0}}^0}}}.\sin {40^0} \approx 9,1 \cr} \)

b) Ta có \(\widehat B = {180^0} - {30^0} - {75^0} = {75^0}\)

Áp dụng định lí sin

\(\eqalign{
& \,\,\,\,\,\,{a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = {{4,5} \over {{\mathop{\rm s}\nolimits} {\rm{in7}}{{\rm{5}}^0}}}\,\,\, \Rightarrow \,\,a = {{4,5} \over {{\mathop{\rm s}\nolimits} {\rm{in7}}{{\rm{5}}^0}}}.\sin {30^0} \approx 2,3 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c = {{4,5} \over {{\mathop{\rm s}\nolimits} {\rm{in7}}{{\rm{5}}^0}}}.\sin {75^0} = 4,5 \cr} \)

c)  Ta có \(\widehat B = {180^0} - {120^0} - {40^0} = {20^0}\)

Áp dụng định lí sin :

\(\eqalign{
& \,\,\,\,\,\,{a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = {{35} \over {{\mathop{\rm s}\nolimits} {\rm{in12}}{{\rm{0}}^0}}}\,\,\,\,\, \Rightarrow \,\,a = {{35} \over {{\mathop{\rm s}\nolimits} {\rm{in12}}{{\rm{0}}^0}}}.\sin {40^0} \approx 26 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b = {{35} \over {{\mathop{\rm s}\nolimits} {\rm{in12}}{{\rm{0}}^0}}}.\sin {20^0} \approx 13,8 \cr} \)

d)  Ta có \(\widehat A = {180^0} - {83^0} - {57^0} = {40^0}\)

Áp dụng định lí sin :

\(\eqalign{
& \,\,\,\,\,\,{a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = {{137,5} \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{{\rm{0}}^0}}}\,\,\,\, \Rightarrow \,\,b = {{137,5} \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{{\rm{0}}^0}}}.\sin {83^0} \approx 212,3 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c = {{137,5} \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{{\rm{0}}^0}}}.\sin {57^0} \approx 179,4 \cr} \)