Bài 29 trang 90 SGK Đại số và Giải tích 12 Nâng cao
Đề bài
Bài 29. Tính \({3^{{{\log }_3}18}};{3^{5{{\log }_3}2}};{\left( {{1 \over 8}} \right)^{{{\log }_2}5}};{\left( {{1 \over {32}}} \right)^{{{\log }_{0,5}}2}}\)
Hướng dẫn giải
Áp dụng \({a^{{{\log }_a}b}} = b\left( {a > 0,a \ne 1} \right)\)
\({3^{{{\log }_3}18}} = 18;\) \({3^{5{{\log }_3}2}} = {3^{lo{g_3}{2^5}}} = {2^5} = 32;\)
\({\left( {{1 \over 8}} \right)^{{{\log }_2}5}} = {\left( {{2^{ - 3}}} \right)^{{{\log }_2}5}} = {2^{\left( { - 3} \right){{\log }_2}5}} = {2^{{{\log }_2}{5^{ - 3}}}} = {5^{ - 3}} = {1 \over {125}};\)
\({\left( {{1 \over {32}}} \right)^{{{\log }_{0,5}}2}} = {\left( {{{\left( {{1 \over 2}} \right)}^5}} \right)^{{{\log }_{{1 \over 2}}}2}} = {\left( {{1 \over 2}} \right)^{lo{g_{{1 \over 2}}}{2^5}}} = {2^5} = 32;\)