Đăng ký

Bài 28 trang 96 SGK Hình học 10 Nâng cao

Đề bài

Xét vị trí tương đối của đường thẳng \(\Delta \) và đường tròn (C) sau đây 

\(\eqalign{
& \Delta :3x + y + m = 0, \cr
& (C):{x^2} + {y^2} - 4x + 2y + 1 = 0. \cr} \)

Hướng dẫn giải

(C) có tâm \(I(2, -1)\) và bán kính \(R = \sqrt {{2^2} + {1^2} - 1}  = 2.\)

Khoảng cách từ I đến \(\Delta \)  là:

\(d\left( {I,\Delta } \right) = {{|3.2 - 1 + m|} \over {\sqrt {{3^2} + {1^2}} }} = {{|5 + m|} \over {\sqrt {10} }}\)

+) Nếu

\({{|5 + m|} \over {\sqrt {10} }} = 2 \Leftrightarrow |m + 5| > 2\sqrt {10}\)

\(\Leftrightarrow \left[ \matrix{
m < - 5 -2 \sqrt {10} \hfill \cr
m > - 5 + 2\sqrt {10} \hfill \cr} \right.\)

 thì \(\Delta \) và (C) cắt nhau.

+) Nếu \({{|5 + m|} \over {\sqrt {10} }} = 2 \Leftrightarrow |5 + m| = 2\sqrt {10}  \Leftrightarrow m =  - 5 \pm 2\sqrt {10} \) thì \(\Delta \) và (C) tiếp xúc.

+) Nếu  \({{|5 + m|} \over {\sqrt {10} }} < 2 \Leftrightarrow |5 + m| < 2\sqrt {10} \)

\(\Leftrightarrow  - 5 - 2\sqrt {10}  < m <  - 5 + 2\sqrt {10} \) thì \(\Delta \) và (C) không cắt nhau.