Đăng ký

Bài 17 trang 28 Hình học 12 Nâng cao

Đề bài

Bài 17. Tính thể tích của khối hộp \(ABCD.A'B'C'D'\), biết rằng \(AA'B'D'\) là khối tứ diện đều cạnh \(a\).

Hướng dẫn giải

\(\eqalign{
& A'H = {2 \over 3}A'O' = {2 \over 3}{{a\sqrt 3 } \over 2} = {{a\sqrt 3 } \over 3} \cr
& \Rightarrow A{H^2} = AA{'^2} - A'{H^2} = {a^2} - {{{a^2}} \over 3} = {{2{a^2}} \over 3} \cr
& \Rightarrow AH = a\sqrt {{2 \over 3}} = {{a\sqrt 6 } \over 3} \cr} \)

Diện tích tam giác đều \(A’B’D’\): \({S_{A'B'D'}} = {{{a^2}\sqrt 3 } \over 4}\)
Diện tích hình thoi \(A’B’C’D’\): \({S_{A'B'C'D'}} = 2{S_{B'C'D'}} = {{{a^2}\sqrt 3 } \over 2}\)
Vậy thể tích khối hộp đã cho là \(V = B.h = {{{a^2}\sqrt 3 } \over 2}.{{a\sqrt 6 } \over 3} = {{{a^3}\sqrt 2 } \over 2}\)