Đăng ký

Giải bài 19 trang 43 - Sách giáo khoa Toán 8 tập 1

Đề bài

Qui đồng mẫu thức các phân thức sau:

a) \(\dfrac{1}{x+2},\dfrac{8}{2x-x^2}\)                        b) \(x^2+1,\dfrac{x^4}{x^2-1}\)

c) \(\dfrac{x^3}{x^3-3x^2y+3xy^2-y^3},\dfrac{x}{y^2-xy}\)

 

Hướng dẫn giải

a) Ta có : 2x - x\(^2\) = x(2 - x) = -x(x - 2)

    MTC = x(x + 2)(x - 2)

Do đó : \(\dfrac{1}{x+2}=\dfrac{x(x-2)}{x(x-2)(x+2)}\)

             \(\dfrac{8}{2x-x^2}=\dfrac{8}{-x(x-2)}=\dfrac{-8}{x(x-2)}=\dfrac{-8(x+2)}{x(x-2)(x+2)}\)

b) MTC = x\(^2\) - 1;

 Ta có : x\(^2\) + 1 = \(\dfrac{x^2+1}{1}=\dfrac{(x^2+1)(x^2-1)}{x^2-1}=\dfrac{x^4-1}{x^2-1}\)

c) Ta có : \(x^3-3x^2y+3xy^2-y^3=(x-y)^3\)

                \(y^2-xy = y(y-x)=-y(x-y)\)

MTC = \(y(x-y)^3\)

Do đó : \(\dfrac{x^3}{x^3-3x^2y+3xy^2-y^3}=\dfrac{x^3}{(x-y)^3}=\dfrac{yx^3}{y(x-y)^3}\)

             \(\dfrac{x}{y^2-xy}=\dfrac{x}{-y(x-y)}=\dfrac{-x}{y(x-y)}=\dfrac{-x(x-y)^2}{y(x-y)^3}\)