Giải bài 19 trang 43 - Sách giáo khoa Toán 8 tập 1
Đề bài
Qui đồng mẫu thức các phân thức sau:
a) \(\dfrac{1}{x+2},\dfrac{8}{2x-x^2}\) b) \(x^2+1,\dfrac{x^4}{x^2-1}\)
c) \(\dfrac{x^3}{x^3-3x^2y+3xy^2-y^3},\dfrac{x}{y^2-xy}\)
Hướng dẫn giải
a) Ta có : 2x - x\(^2\) = x(2 - x) = -x(x - 2)
MTC = x(x + 2)(x - 2)
Do đó : \(\dfrac{1}{x+2}=\dfrac{x(x-2)}{x(x-2)(x+2)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{8}{-x(x-2)}=\dfrac{-8}{x(x-2)}=\dfrac{-8(x+2)}{x(x-2)(x+2)}\)
b) MTC = x\(^2\) - 1;
Ta có : x\(^2\) + 1 = \(\dfrac{x^2+1}{1}=\dfrac{(x^2+1)(x^2-1)}{x^2-1}=\dfrac{x^4-1}{x^2-1}\)
c) Ta có : \(x^3-3x^2y+3xy^2-y^3=(x-y)^3\)
\(y^2-xy = y(y-x)=-y(x-y)\)
MTC = \(y(x-y)^3\)
Do đó : \(\dfrac{x^3}{x^3-3x^2y+3xy^2-y^3}=\dfrac{x^3}{(x-y)^3}=\dfrac{yx^3}{y(x-y)^3}\)
\(\dfrac{x}{y^2-xy}=\dfrac{x}{-y(x-y)}=\dfrac{-x}{y(x-y)}=\dfrac{-x(x-y)^2}{y(x-y)^3}\)