Đăng ký

Câu 47 trang 91 SGK Đại số và Giải tích 11 Nâng cao

Đề bài

Bài 47. Tính kỳ vọng, phương sai và độ lệch chuẩn của biến ngẫu nhiên rời rạc X trong bài tập 44 (tính chính xác đến hàng phần trăm).

Hướng dẫn giải

Ta có: X = {0, 1, 2, 3}

Bảng phân bố xác suất của X là :

X

0

1

2

3

P

 \({1 \over 8}\)

\({3 \over 8}\) 

\({3 \over 8}\) 

\({1 \over 8}\) 

X

0

1

2

3

P

 \({1 \over 8}\)

\({3 \over 8}\) 

\({3 \over 8}\) 

\({1 \over 8}\) 

 

Kỳ vọng của X là :

\(E\left( X \right) = {x_1}{p_1} + {x_2}{p_2} + {x_3}{p_3} + {x_4}{p_4} = 0.{1 \over 8} + 1.{3 \over 8} + 2.{3 \over 8} + 3.{1 \over 8} = 1,5\)

Phương sai của X là :

\(V\left( X \right) = {\left( {{x_1} - 1,5} \right)^2}{p_1} + {\left( {{x_2} - 1,5} \right)^2}{p_2} + {\left( {{x_3} - 1,5} \right)^2}{p_3} + {\left( {{x_4} - 1,5} \right)^2}{p_4} = 0,75\)

Độ lệch chuẩn của X là :  \(\sigma \left( X \right) = \sqrt {V\left( X \right)} \approx 0,87\)