Câu 43 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Đề bài
Bài 43. Cho dãy số (un) xác định bởi
U1 = 1 và un + 1 = 5un + 8 với mọi n ≥ 1.
a. Chứng minh rằng dãy số (vn), với vn = un + 2, là một cấp số nhân. Hãy tìm số hạng tổng quát của cấp số nhân đó.
b. Dựa vào kết quả phần a, hãy tìm số hạng tổng quát của dãy số (un).
Hướng dẫn giải
a. Từ hệ thức xác định dãy số (un), suy ra với mọi n ≥ 1, ta có :
\({u_{n + 1}} + 2 = 5\left( {{u_n} + 2} \right)\,hay \,\,{v_{n + 1}} = 5{u_n}\)
Do đó (vn) là một cấp số nhân với số hạng đầu \({v_1} = {\rm{ }}{u_1} + {\rm{ }}2{\rm{ }} = {\rm{ }}3\) và công bội q = 5.
Số hạng tổng quát : \({v_n} = {\rm{ }}{3.5^{n{\rm{ }}-{\rm{ }}1}}\)
b. \({u_n} = {v_n} - 2 = {3.5^{n - 1}} - 2\) với mọi \(n ≥ 1\)