Câu 37 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Đề bài
Bài 37. Bốn góc lượng giác có số đo dương lâp thành một cấp số nhân có tổng là \(360^0\). Hãy tìm bốn góc đó, biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.
Hướng dẫn giải
Kí hiệu A, B, C, D là số đo bốn góc (tính theo đơn vị độ) của tứ giác lồi đã cho. Không mất tổng quát, giả sử \(A ≤ B ≤ C ≤ D\). Khi đó, từ giả thiết của bài toán ta có \(D = 8A\), và A, B, C, D theo thứ tự đó lập thành một cấp số nhân.
Gọi q là công bội của cấp số nhân đó, ta có :
\(8A = D = A.q^3⇔ q = 2\).
Do đó \(360 = A + B + C + D = A.{{1 - {2^4}} \over {1 - 2}} = 15A \Leftrightarrow A = 24^0\)
Suy ra \(B = A.2 = 48^0\), \(C = A.2^2= 96^0\) và \(D = A.2^3= 192\)