Câu 25 trang 32 SGK Đại số và Giải tích 11 Nâng cao
Đề bài
Bài 25. Một chiếc guồng nước có dạng hình tròn bán kính \(2,5m\) ;trục của nó đặt cách mặt nước \(2m\) (h.1.24). Khi guồng quay đều, khoảng cách \(h\) (mét) từ một chiếc gầu gắntại điểm \(A\) của guồng đến mặt nước được tính theo công thức \(h = |y|\), trong đó
\(y = 2 + 2,5\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right]\)
Với \(x\) là thời gian quay guồng (\(x ≥ 0\)), tính bằng phút ; ta quy ước rằng \(y > 0\) khi gầu ở bên trên mặt nước và \(y < 0\) khi gầu ở dưới nước (xem bài đọc thêm về dao động điều hòa trang 15). Hỏi :
a. Khi nào thì chiếc gầu ở vị trí thấp nhất ?
b. Khi nào thì chiếc gầu ở vị trí cao nhất ?
c. Chiếc gầu cách mặt nước \(2m\) lần đầu tiên khi nào ?
Hướng dẫn giải
a. Chiếc gầu ở vị trí thấp nhất khi \(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = - 1.\) Ta có :
\(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = - 1 \Leftrightarrow 2\pi \left( {x - {1 \over 4}} \right) = - {\pi \over 2} + k2\pi \Leftrightarrow x = k\,\left( {\,k \in\mathbb Z} \right)\)
Điều đó chứng tỏ rằng chiếc gầu ở vị trí thấp nhất tại các thời điểm 0 phút ; 1 phút ; 2 phút ; 3 phút…
b. Chiếc gầu ở vị trí cao nhất khi \(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = 1.\) Ta có :
\(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = 1 \Leftrightarrow 2\pi \left( {x - {1 \over 4}} \right) = {\pi \over 2} + k2\pi \Leftrightarrow x = {1 \over 2} + k\,\left( {\,k \in N} \right)\)
Điều đó chứng tỏ chiếc gàu ở vị trí cao nhất tại các thời điểm 0,5 phút; 1,5 phút ; 2,5 phút ; 3,5 phút …
c. Chiếc gàu cách mặt nước 2 mét khi \(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = 0,\) nghĩa là tại các thời điểm \(x = {1 \over 4} + {1 \over 2}k\) (phút); do đó lần đầu tiên nó cách mặt nước 2 mét khi quay được \({1 \over 4}\) phút (ứng với \(k = 0\)).