Đăng ký

Bài 32 trang 103 SGK Hình học 10 Nâng cao

Đề bài

Viết phương trình chính tắc của đường elip (E) trong mỗi trường hợp sau

a) (E) có độ dài trục lớn bằng 8 và tâm sai \(e = {{\sqrt 3 } \over 2};\)

b) (E) có độ dài trục bé bằng 8 và tiêu cự bằng 4;

c) (E) có một tiêu điểm là \(F(\sqrt 3 ;0)\) và đi qua điểm \(M\left( {1;{{\sqrt 3 } \over 2}} \right).\)

Hướng dẫn giải

a) Ta có:

\(\eqalign{
& 2a = 8 \Leftrightarrow a = 4 \cr
& e = {c \over a} = {{\sqrt 3 } \over 2} \Rightarrow c = 2\sqrt 3 \cr
& {b^2} = {a^2} - {c^2} = 16 - 12 = 4 \cr} \)

Vậy \((E):{{{x^2}} \over {16}} + {{{y^2}} \over 4} = 1.\)

b) Ta có: 

\(\eqalign{
& 2b = 8 \Leftrightarrow b = 4 \cr
& 2c = 4 \Leftrightarrow c = 2 \cr
& {a^2} = {b^2} + {c^2} = 16 + 4 = 20 \cr} \) 

Vậy \((E):{{{x^2}} \over {20}} + {{{y^2}} \over {16}} = 1.\)

c) Ta có: \(c = \sqrt 3  \Rightarrow {a^2} - {b^2} = 3\)

Giả sử: \((E):{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

\(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\) nên \({1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\)

Ta có hệ phương trình:

\(\eqalign{
& \left\{ \matrix{
{a^2} - {b^2} = 3 \hfill \cr
{1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr
{1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr
4{b^2} + 3{b^2} + 9 = 4{b^4} + 12{b^2} \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr
4{b^4} + 5{b^2} - 9 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
{b^2} = - {9 \over 4}\,(loai) \hfill \cr
{b^2} = 1 \Rightarrow {a^2} = 4 \hfill \cr} \right. \cr} \) 

Vậy  \((E):{{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)