Đăng ký

Bài 3 trang 45 SGK Hình học 10

Đề bài
Cho nửa đường tròn tâm \(O\) có  đường kính \(AB = 2R\). Gọi \(M\) và \(N\) là hai điểm thuộc nửa đường tròn sao cho hai dây cung \(AM\) và \(BN\) cắt nhau tại \(I\).

a) Chứng minh \(\overrightarrow {AI} .\overrightarrow {AM}  = \overrightarrow {AI} .\overrightarrow {AB}\) và \(\overrightarrow {BI} .\overrightarrow {BN}  = \overrightarrow {BI} .\overrightarrow {BA}\);

b) Hãy dùng câu a) để tính \(\overrightarrow {AI} .\overrightarrow {AM}  + \overrightarrow {BI} .\overrightarrow {BN}\) theo \(R.\)

Hướng dẫn giải

Cho hai vecto \(\overrightarrow a\) và \( \overrightarrow b \) đều khác vecto \( \overrightarrow 0. \) Khi đó tích vô hướng của vecto \(\overrightarrow a\) và \( \overrightarrow b \) được xác định bởi công thức sau:

\[\overrightarrow a \overrightarrow {.b}  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\;\overrightarrow b } \right).\]

Lời giải chi tiết

Ta có :  \(\left( {\overrightarrow {AI} .\overrightarrow {AB} } \right) = \overrightarrow {AI} \left( {\overrightarrow {AM}  + \overrightarrow {MB} } \right) \)\(= \overrightarrow {AI} .\overrightarrow {AM}  + \overrightarrow {AI} .\overrightarrow {MB} \)

Mặt khác: \(\overrightarrow {AI}  \bot \overrightarrow {MB} \) nên \(\overrightarrow {AI} .\overrightarrow {MB}  = 0\) 

Từ đó: \(\overrightarrow {AI} .\overrightarrow {AM}  = \overrightarrow {AI} .\overrightarrow {AB} \)

Ta có: \(\overrightarrow {BI} .\overrightarrow {BA}  = \overrightarrow {BI} \left( {\overrightarrow {BN}  + \overrightarrow {NA} } \right) \)\(= \overrightarrow {BI} .\overrightarrow {BN}  + \overrightarrow {BI} .\overrightarrow {NA} \)

Mặt khác: \(\overrightarrow {BI}  \bot \overrightarrow {NA} \) nên \(\overrightarrow {BI} .\overrightarrow {NA}  = 0\)  

Từ đó: \(\overrightarrow {BI} .\overrightarrow {BN}  = \overrightarrow {BI} .\overrightarrow {BA} \)

 \(\eqalign{b)& \overrightarrow {AI} .\overrightarrow {AM} + \overrightarrow {BI} .\overrightarrow {BN}\cr& = \overrightarrow {AI} .\overrightarrow {AB} + \overrightarrow {BI} .\overrightarrow {BA} \cr & = \overrightarrow {AI} .\overrightarrow {AB} - \overrightarrow {BI} .\overrightarrow {AB} \cr&= \overrightarrow {AB} \left( {\overrightarrow {AI} - \overrightarrow {BI} } \right) \cr & = \overrightarrow {AB} .\overrightarrow {AB} = {\overrightarrow {AB} ^2} = 4{{\rm{R}}^2} \cr} \)

shoppe