Bài 26 trang 199 SGK Đại số và Giải tích 12 Nâng cao
Đề bài
Bài 26
a) Dùng công thức cộng trong lượng giác để chứng minh rằng với mọi số thực \(\varphi \), ta có \({\left( {\cos \varphi + i\sin \varphi } \right)^2} = \cos 2\varphi + i\sin 2\varphi \).
Từ đó hãy tìm mọi căn bậc hai của số phức \(\cos 2\varphi + i\sin 2\varphi \). Hãy so sánh cách giải này với cách giải trong bài học ở bài 2.
b) Tìm các căn bậc hai của \({{\sqrt 2 } \over 2}\left( {1 - i} \right)\) bằng hai cách nói ở câu a).
Hướng dẫn giải
a) Với mọi \(\varphi \) ta có: \({\left( {\cos \varphi + i\sin \varphi } \right)^2} = {\cos ^2}\varphi - {\sin ^2}\varphi + \left( {2\sin \varphi \cos \varphi } \right)i\)
\( = \cos 2\varphi + i\sin 2\varphi \)
Vậy các căn bậc hai của \(\cos 2\varphi + i\sin 2\varphi \) là \( \pm \left( {\cos \varphi + i\sin \varphi } \right)\)
Theo cách giải trong bài học, để tìm căn bậc hai của\(\cos 2\varphi + i\sin 2\varphi \) ta giải hệ phương trình\(\left\{ \matrix{ {x^2} - {y^2} = \cos 2\varphi \hfill \cr 2xy = \sin 2\varphi \hfill \cr} \right.\)
Rõ ràng hệ có các nghiệm \(\left( {\cos \varphi ,\sin \varphi } \right),\left( { - \cos \varphi , - \sin \varphi } \right)\) do đó\( \pm \left( {\cos \varphi + i\sin \varphi } \right)\) là hai căn bậc hai của\(\cos 2\varphi + i\sin 2\varphi \). Ta biết rằng chỉ có hai căn như thế nên đó là tất cả các căn bậc hai cần tìm.
b) \({{\sqrt 2 } \over 2}\left( {1 - i} \right) = \cos {\pi \over 4} - i\sin {\pi \over 4} = \cos \left( { - {\pi \over 4}} \right) + i\sin \left( { - {\pi \over 4}} \right)\text{ thì theo câu a) }, {{\sqrt 2 } \over 2}\left( {1 - i} \right)\) có hai căn bậc hai là \( \pm \left( {\cos \left( {{{ - \pi } \over 8}} \right) + i\sin \left( {{{ - \pi } \over 8}} \right)} \right) = \pm \left( {\cos {\pi \over 8} - i\sin {\pi \over 8}} \right)\)
Mà \(\eqalign{ & \cos {\pi \over 8} = \sqrt {{{1 + \cos {\pi \over 4}} \over 2}} = \sqrt {{{1 + {{\sqrt 2 } \over 2}} \over 2}} = {1 \over 2}\sqrt {2 + \sqrt 2 } \cr & \sin {\pi \over 8} = \sqrt {{{1 - \cos {\pi \over 4}} \over 2}} = \sqrt {{{1 - {{\sqrt 2 } \over 2}} \over 2}} = {1 \over 2}\sqrt {2 - \sqrt 2 } \cr} \)
Vậy hai căn bậc hai cần tìm là \( \pm {1 \over 2}\left( {\sqrt {2 + \sqrt 2 } - i\sqrt {2 - \sqrt 2 } } \right)\)
Còn theo bài học, việc tìm các căn bậc hai của\({{\sqrt 2 } \over 2}\left( {1 - i} \right)\) đưa về việc giải hệ phương trình\(\left\{ \matrix{ {x^2} - {y^2} = {{\sqrt 2 } \over 2} \hfill \cr 2xy = - {{\sqrt 2 } \over 2} \hfill \cr} \right.\)
Hệ đó tương đương với \(\left\{ \matrix{ 8{x^4} - 4\sqrt 2 {x^2} - 1 = 0 \hfill \cr y = - {{\sqrt 2 } \over {4x}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ {x^2} = {{\sqrt 2 + 2} \over 4} \hfill \cr y = - {{\sqrt 2 } \over {4x}} \hfill \cr} \right.\)
nên có các nghiệm là: \(\left( {{{\sqrt {2 + \sqrt 2 } } \over 2};{{ - \sqrt {2 - \sqrt 2 } } \over 2}} \right),\left( {{{ - \sqrt {2 + \sqrt 2 } } \over 2};{{\sqrt {2 - \sqrt 2 } } \over 2}} \right)\)
Vậy ta lại được hai căn bậc hai đã viết ở trên.