Bài 16 trang 102 SGK Hình học 12
Đề bài
Trong không gian \(Oxyz\) cho mặt phẳng \((α)\) có phương trình \(4x + y + 2z + 1 = 0\) và mặt phẳng \((β)\) có phương trình \(2x - 2y + z + 3 = 0\).
a) Chứng minh rằng \((α)\) cắt \((β)\).
b) Viết phương trình tham số của đường thẳng \(d\) là giao của \((α)\) và \((β)\).
c) Tìm điểm \(M'\) đối xứng với điểm \(M(4 ; 2 ; 1)\) qua mặt phẳng \((α)\).
d) Tìm điểm \(N'\) đối xứng với điểm \(N(0 ; 2 ; 4)\) qua đường thẳng \(d\).
Hướng dẫn giải
a) Gọi \(\overrightarrow {n_1} ;\overrightarrow {n_2} \) lần lượt là VTPT của hai mặt phẳng \(\left( \alpha \right);\,\,\left( \beta \right)\), chứng minh hai vector \({\overrightarrow {n_1} ;\overrightarrow {n_2} }\) không cùng phương.
b) Tìm một điểm thỏa mãn hệ phương trình \(\left\{ \matrix{4x + y + 2z + 1 = 0 \hfill \cr 2x - 2y + z + 3 = 0 \hfill \cr} \right.\), điểm đó thuộc d.
\(\overrightarrow u = \left[ {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right]\) là 1 VTCP của đường thẳng \(d\).
Viết phương trình tham số của đường thẳng biết một điểm đi qua và VTCP.
c) Tìm tọa độ hình chiếu H của điểm M trên mặt phẳng \((α)\).
- Viết phương trình đường thẳng d đi qua M và vuông góc với mặt phẳng \((α)\).
- Tìm tọa độ điểm H là giao điểm của d và mặt phẳng \((α)\).
Khi đó H là trung điểm của MM', suy ra tọa độ của điểm M'.
d) Tìm tọa độ hình chiếu I của điểm N trên đường thẳng \(d\).
- Viết phương trình mặt phẳng (P) đi qua N và vuông góc với đường thẳng \(d\).
- Tìm tọa độ điểm I là giao điểm của (P) và đường thẳng \(d\).
Khi đó I là trung điểm của NN', suy ra tọa độ của điểm N'.
Lời giải chi tiết
a) Mặt phẳng \((α)\) có vectơ pháp tuyến \(\overrightarrow {n_1} = (4; 1; 2)\)
Mặt phẳng \((β)\) có vectơ pháp tuyến \(\overrightarrow {n_2} = (2; -2; 1)\)
Vì \({4 \over 2} \ne {1 \over { - 2}} \ne {2 \over 1} \Rightarrow \overrightarrow {n_1} \) và \(\overrightarrow {n_2} \) không cùng phương.
Suy ra \((α)\) và \((β)\) cắt nhau.
b) \((α)\) cắt \((β)\) nên \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) có giá vuông góc với đường thẳng \(d\), vì vậy vectơ \(\overrightarrow {{u_1}} = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right]= (5; 0; -10\)) là một vectơ chỉ phương của đường thẳng \(d\).
Ta có thể chọn vectơ \(\overrightarrow u = (1; 0; -2)\) làm vectơ chỉ phương.
Ta tìm một điểm nằm trên \(d\).
Xét hệ\(\left\{ \matrix{
4x + y + 2z + 1 = 0 \hfill \cr
2x - 2y + z + 3 = 0 \hfill \cr} \right.\)
Lấy điểm \(M_0(1; 1; -3) ∈ d\).
Phương trình tham số của \(d\) là:\(\left\{ \matrix{
x = 1 + s \hfill \cr
y = 1 \hfill \cr
z = - 3 - 2s \hfill \cr} \right.\)
c) Mặt phẳng \((α)\) có vectơ pháp tuyến \(\overrightarrow n = (4; 1; 2)\).
Đường thẳng \(∆\) đi qua \(M(4; 2; 1)\) và vuông góc với \((α)\), nhận vectơ \(\overrightarrow n \) làm vectơ chỉ phương và có phương trình tham số:
\(\left\{ \matrix{
x = 4 + 4t \hfill \cr
y = 2 + t \hfill \cr
z = 1 + 2t \hfill \cr} \right.\)
Trước hết ta tìm toạ độ hình chiếu \(H\) của \(M\) trên \((α)\) bằng cách thay các biểu thức của \(x, y, z\) theo \(t\) vào phương trình của \((α)\), ta có:
\(4(4 + 4t) + (2 + t) + 2(1 + 2t) + 1 = 0\)
\( \Leftrightarrow 21t + 21 = 0 \Leftrightarrow t = - 1 \Rightarrow H (0; 1; -1)\)
Gọi \(M' (x; y; z)\) là điểm đối xứng với \(M\) qua mp \((α)\) thì \(\overrightarrow {MM'} = 2\overrightarrow {MH} \):
\(\overrightarrow {MH} = (-4; -1; -2)\)
\(\overrightarrow {MM'} = (x - 4; y - 2; z - 1)\).
\(\overrightarrow {MM'} = 2\overrightarrow {MH} \Leftrightarrow \left\{ \matrix{
x - 4 = 2.( - 4) \Rightarrow x = - 4 \hfill \cr
y - 2 = 2.( - 1) \Rightarrow y = 0 \hfill \cr
z - 1 = 2.( - 2) \Rightarrow z = - 3 \hfill \cr} \right.\)
\(\Rightarrow M( - 4;0; - 3)\)
d) Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow a = (1; 0; -2)\).
Mặt phẳng \((P)\) đi qua \(N(0; 2; 4)\) và vuông góc với \(d\), nhận \(\overrightarrow a \) làm vectơ pháp tuyến và có phương trình:
\(1(x - 0) + 0(y - 2) - 2(z - 4) = 0\)
\((P)\): \(x - 2z + 8 = 0\)
Ta tìm giao điểm \(I\) của \(d\) và \((P)\). Ta có:
\(1+s - 2(-3-2s) + 8 = 0\)\( \Leftrightarrow s = -3 \Leftrightarrow I( -2; 1; 3)\)
\(N' (x; y; z)\) là điểm đối xứng của \(N\) qua \(d\) thì \(\overrightarrow {NN'} = 2\overrightarrow {NI} \)
\(\overrightarrow {NI} = (-2; -1; -1)\), \(\overrightarrow {NN'} = (x; y - 2; z - 4) \)
\( \Rightarrow \left\{ \matrix{
x = ( - 2).2 \hfill \cr
y - 2 = ( - 1).2 \hfill \cr
z - 4 = ( - 1).2 \hfill \cr} \right. \Rightarrow \left\{ \matrix{
x = - 4 \hfill \cr
y = 0 \hfill \cr
z = 2 \hfill \cr} \right.\)
\(\Rightarrow N'( - 4;0;2)\)