Bài 12 trang 101 SGK Hình học 12
Đề bài
Trong không gian \(Oxyz\) cho bốn điểm \(A(3 ; -2 ; -2), B(3 ; 2 ; 0), C(0 ; 2 ; 1)\) và \(D(-1 ; 1 ; 2)\)
a) Viết phương trình mặt phẳng \((BCD)\). Suy ra \(ABCD\) là một tứ diện.
b) Viết phương trình mặt cầu \((S)\) tâm \(A\) và tiếp xúc với mặt phẳng \((BCD)\).
c) Tìm toạ độ tiếp điểm của \((S)\) và mặt phẳng \((BCD)\).
Hướng dẫn giải
a) Mặt phẳng (BCD) đi qua B và nhận \(\overrightarrow n = \left[ {\overrightarrow {BC} ;\overrightarrow {BD} } \right]\) là 1 VTPT.
- Chứng minh điểm A không thuộc mặt phẳng (BCD), từ đó suy ra ABCD là tứ diện.
b) Mặt cầu tâm \(A\), tiếp xúc với mp \((BCD)\) có bán kính bằng khoảng cách từ \(A\) đến mp \((BCD)\)
Sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.
c) H là hình chiếu của điểm A trên mặt phẳng (BCD).
- Viết phương trình đường thẳng d đi qua A và vuông góc với mặt phẳng BCD.
- Tìm giao điểm của đường thẳng d và mặt phẳng (BCD). Khi đó giao điểm trên chính là điểm H cần tìm.
Lời giải chi tiết
a) Ta có: \(\overrightarrow {BC} = (-3; 0; 1)\), \(\overrightarrow {BD} = (-4; -1; 2)\)
Gọi \(\overrightarrow n \) là vectơ pháp tuyến của mp \((BCD)\) thì:
\(\overrightarrow n = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = (1;2;3)\)
Mặt phẳng \((BCD)\) đi qua \(B\) và có vectơ pháp tuyến \(\overrightarrow n = (1; 2; 3)\) có phương trình:
\(1(x - 3) + 2(y - 2) + 3(z - 0) = 0\)
\(\Leftrightarrow x + 2y + 3z - 7 = 0\)
Thay toạ độ điểm \(A\) vào phương trình của mp \((BCD)\), ta có:
\(3 + 2(-2) + 3(-2) - 7 = -14 ≠ 0\)
Vậy \(A ∉ (BCD)\) \( \Rightarrow \)bốn điểm \(A, B, C, D\) không đồng phẳng. Vậy ABCD là một tứ diện.
b) Mặt cầu tâm \(A\), tiếp xúc với mp \((BCD)\) có bán kính bằng khoảng cách từ \(A\) đến mp \((BCD)\): \(r = d (A,(BCD))\) =\({{\left| { - 14} \right|} \over {\sqrt {{1^2} + {2^2} + {3^2}} }} = \sqrt {14} \)
Phương trình mặt cầu cần tìm: \((S): (x - 3)^2 + (y + 2)^2 + (z + 2)^2 = 14\)
c) Phương trình đường thẳng \((d)\) đi qua \(A\) và vuông góc với mp \((BCD)\) là: \(\left\{ \matrix{x = 3 + t \hfill \cr y = - 2 + 2t \hfill \cr z = - 2 + 3t \hfill \cr} \right.\)
Gọi \(H = d \cap \left( {BCD} \right) \Rightarrow H\left( {3 + t; - 2 + 2t; - 2 + 3t} \right)\)
Thay tọa độ điểm H vào phương trình của \((BCD)\), ta có:
\((3 + t) + 2(-2 + 2t) + 3(-2 + 3t) - 7 = 0 \)\( \Leftrightarrow t = 1 \Rightarrow H\left( {4;0;1} \right)\)