Câu 2 trang 130 SGK Đại số và Giải tích 11 Nâng cao
Đề bài
Bài 2. Chứng minh rằng hai dãy số (un) và (vn) với
\({u_n} = {1 \over {n\left( {n + 1} \right)}},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{v_n} = {{{{\left( { - 1} \right)}^n}\cos n} \over {{n^2} + 1}}\)
Có giới hạn 0.
Hướng dẫn giải
Ta có:
\(\eqalign{
& \left| {{u_n}} \right| = {1 \over {n\left( {n + 1} \right)}} < {1 \over n}\,\text{ và }\,\lim {1 \over n} = 0 \Rightarrow \lim {u_n} = 0 \cr
& \left| {{v_n}} \right| = \left| {{{{{\left( { - 1} \right)}^n}\cos n} \over {{n^2} + 1}}} \right| = {{\left| {\cos n} \right|} \over {{n^2} + 1}} \le {1 \over {{n^2} + 1}} < {1 \over {{n^2}}}\,\text{ và }\,\lim {1 \over {{n^2}}} = 0 \cr
& \Rightarrow \lim {v_n} = 0 \cr} \)