Bài 7 trang 63 SGK Đại số 10
Đề bài
Giải các phương trình
a) \(\sqrt{5x +6} = x - 6\);
b) \(\sqrt{3 -x}\) = \(\sqrt{x +2} +1\);
c) \(\sqrt{2x^{2} +5} = x + 2\).
d) \(\sqrt{4x^{2} +2x + 10} = 3x + 1\).
Hướng dẫn giải
Để giải các phương trình chứa ẩn dưới căn bậc hai, ta thường bình phương hai vế để đưa về một phương trình hệ quả không chứa ẩn dưới dấu căn.
Lời giải chi tiết
a) ĐKXĐ: \(5x + 6 ≥ 0 ⇔ x \ge \frac{-6}{5}\).
Bình phương hai vế ta được:
\(\eqalign{
& 5x + 6 = {(x - 6)^2} \cr
& \Rightarrow {x^2} - 17x + 30 = 0 \cr
& \Rightarrow \left[ \matrix{
x = 2 \text{( loại )}\hfill \cr
x = 15 \text{( thỏa mãn )}\hfill \cr} \right. \cr} \)
\(x= 2\) loại bởi vì khi ta thay giá trị \(x= 2\) vào phương trình thì vế phải âm.
Vậy phương trình có nghiệm \(x=15\).
b) ĐKXĐ: \(– 2 ≤ x ≤ 3\). Bình phương hai vế ta được
\(3 - x = x + 3 + 2\sqrt{x+2}\)
\( \Rightarrow -2x = 2\sqrt{x+2}\).
Điều kiện \(x ≤ 0\). Bình phương tiếp ta được:
\(\eqalign{
& {x^2} = x + 2 \cr
& \Rightarrow \left[ \matrix{
x = - 1 \text{( thỏa mãn )} \hfill \cr
x = 2 \text{( loại )} \hfill \cr} \right. \cr} \)
Vậy phương trình có nghiệm \(x=-1\)
c) ĐKXĐ: \(x ≥ -2\).
Bình phương hai vế ta được:
\(\eqalign{
& 2{x^2} + {\rm{ }}5{\rm{ }} = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\cr& \Leftrightarrow {\rm{ }}{x^{2}} - {\rm{ }}4x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \cr
& \Leftrightarrow \left[ \matrix{
x = 2 - \sqrt 3 \text{( thỏa mãn )}\hfill \cr
x = 2 + \sqrt 3 \text{( thỏa mãn )}\hfill \cr} \right. \cr} \)
Vậy phương trình đã cho có hai nghiệm \(x = 2 - \sqrt 3\) và \(x = 2 + \sqrt 3\)
d) ĐK: \(x ≥ \frac{-1}{3}\).
Bình phương hai vế ta được:
\(\eqalign{
& 4{x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }}10{\rm{ }} = {\rm{ }}{\left( {3x{\rm{ }} + {\rm{ }}1} \right)^2} \cr&\Leftrightarrow 5{x^2} + 4x - 9 = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 1 \text{( thỏa mãn )}\hfill \cr
x = - {9 \over 5} \text{( loại )}\hfill \cr} \right. \cr} \)
Vậy phương trình có nghiệm \(x=1\).