Bài 6 trang 26 SGK Hình học lớp 12
Đề bài
Cho hai đường thẳng chéo nhau \(d\) và \(d’\). Đoạn thằng \(AB\) có độ dài \(a\) trượt trên \(d\), đoạn thẳng \(CD\) có độ dài \(b\) trượt trên \(d’\). Chứng minh rằng khối tứ diện \(ABCD\) có thể tích không đổi.
Hướng dẫn giải
Gọi \(h\) là độ dài đường vuông góc chung của \(d\) và \(d’\), \(α\) là góc giữa hai đường thẳng \(d\) và \(d’\). Qua \(B, A, C\) dựng hình bình hành \(BACF\). Qua \(A,C, D\) dựng hình bình hành \(ACDE\).
Khi đó \(CFD.ABE\) là một hình lăng trụ tam giác. Ta có:
\[\begin{array}{l}
{V_{D.ABE}} + {V_{D.BACF}} = {V_{CFD.ABE}}\\
{V_{D.ABE}} = \frac{1}{3}{V_{CFD.ABE}} \Rightarrow {V_{D.BACF}} = \frac{2}{3}{V_{CFD.ABE}}\\
{V_{D.ABC}} = \frac{1}{2}{V_{D.BACF}} \Rightarrow {V_{D.ABC}} = \frac{1}{2}.\frac{2}{3}{V_{CFD.ABE}} = \frac{1}{3}{V_{CFD.ABE}}
\end{array}\]
Kẻ \(AH \bot \left( {CDF} \right)\) ta có: \({V_{ABCD}} = \frac{1}{3}.V_{CFD.ABE} = \frac{1}{3}.AH.{S_{CDF}}\)
Ta có:
\(\begin{array}{l}AB//CF \Rightarrow AB//\left( {CDF} \right) \supset CD\\\Rightarrow d\left( {d;d'} \right) = d\left( {AB;CD} \right) = d\left( {AB;\left( {CDF} \right)} \right) \end{array}\)
\(= d\left( {A;\left( {CDF}\right)} \right) = AH = h\)
\(AB//CF \Rightarrow \widehat {\left( {d;d'} \right)} = \widehat {\left( {AB;CD} \right)} = \widehat {\left( {CF;CD} \right)} = \widehat {DCF} = \alpha \)
\( \Rightarrow {S_{CDF}} = \frac{1}{2}.CD.CF.\sin \widehat {DCF} = \frac{1}{2}ab\sin \alpha \)
Vậy \(V_{ABCD}=\frac{1}{3}.h.\frac{1}{2}ab\sin \alpha =\frac{1}{6}.h. ab. sinα = const\). (đpcm)