Bài 3 trang 49 SGK Hình học lớp 12
Đề bài
Tìm tập hợp tâm các mặt cầu luôn luôn chứa một đường tròn cố định cho trước.
Hướng dẫn giải
Sử dụng các tính chất của mặt cầu để làm bài.
Lời giải chi tiết
Giả sử đường tròn cố định \((C)\) tâm \(I\) bán kính \(r\) nằm trên mặt phẳng \((P)\).
Xét đường thẳng \(d\) qua \(I\) và vuông góc với mặt phẳng \((P)\).
Đường thẳng \(d\) được gọi là trục của đường tròn.
Giả sử \(O\) là tâm của mặt cầu \((S)\) chứa đường tròn \((C)\) thì \(O\) cách đều mọi điểm của \((C)\).Vì vậy chân đường vuông góc hạc từ \(O\) xuống mặt phẳng \((P)\) chính là tâm \(I\) của \((C)\). Điều đó xảy ra khi và chỉ khi điểm \(O \in d\)
Kết luận: Tập hợp tâm các mặt cầu luôn luôn chứa một đường tròn cố định cho trước là đường thẳng \(d\) vuông góc với mặt phẳng chứa đường tròn tại tâm của nó.