Đăng ký

Bài 1 trang 45 SGK Hình học 12 Nâng cao

Đề bài

Bài 1. Trong không gian cho ba đoạn thẳng \(AB, BC, CD\) sao cho \(AB \bot BC\,\,,\,\,BC \bot CD\,\,,\,\,CD \bot AB\) . Chứng minh rằng có mặt cầu đi qua bốn điểm \(A, B, C, D\). Tính bán kính mặt cầu đó nếu \(AB = a\,\,,\,\,BC = b\,\,,\,\,CD = c\) .

Hướng dẫn giải


Vì \(AB \bot BC\) và \(AB \bot CD\) nên \(AB \bot \left( {BCD} \right)\). Suy ra \(AB \bot BD\)

Vì \(CD \bot BC\) và \(CD \bot AB\) nên \(CD \bot \left( {ABC} \right) \Rightarrow CD \bot AC\)

Gọi \(I\) là trung điểm \(AD\), ta có \(IB = IA = ID = IC\) nên các điểm \(A, B, C, D\) cùng nằm trên mặt cầu đường kính \(AD\).

Mặt khác ta có: \(A{D^2} = A{B^2} + B{D^2} = A{B^2} + B{C^2} + C{D^2} = {a^2} + {b^2} + {c^2}\)

Do đó bán kính mặt cầu là \(R = {1 \over 2}AD = {1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \)