Giải bài 57 trang 61 - Sách giáo khoa Toán 8 tập 1
Đề bài
Chứng tỏ mỗi cặp phân thức sau bằng nhau:
a) \(\dfrac{3}{2x-3}\) và \(\dfrac{3x+6}{2x^2+x-6}\) b) \(\dfrac{2}{x+4}\) và \(\dfrac{2x^2+6x}{x^3+7x^2+12x}\)
Hướng dẫn giải
a) \(\dfrac{3}{2x-3}\)\(=\dfrac{3(x+2)}{(2x-3)(x+2)}\)\(=\dfrac{3x+6}{2x^2+4x-3x-6}\)\(=\dfrac{3x+6}{2x^2+x-6}\)
Vậy : \(\dfrac{3}{2x-3}\) \(=\dfrac{3x+6}{2x^2+x-6}\) (ĐK : x \(\neq \) -2 ; x \(\neq \) \(\dfrac{-3}{2}\))
b) \(\dfrac{2}{x+4}\) \(=\dfrac{2(x^2+3x)}{(x+4)(x^2+3x)}\)\(=\dfrac{2x^2+6x}{x^3+3x^2+4x^2+12x}\) \(=\dfrac{2x^2+6x}{x^3+7x^2+12x}\)
Vậy \(\dfrac{2}{x+4}\) \(=\dfrac{2x^2+6x}{x^3+7x^2+12x}\) (ĐK : x \(\neq \) 0 ; x \(\neq \) -4 ; x \(\neq \) -3)