Đăng ký

Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 3 - Hình học 7

Đề bài
Bài 1: Cho tam giác ABC biết BC = 1cm; AB = 6cm. Tính độ dài cạnh AC biết độ dài này là một số nguyên.

Bài 2: Chứng minh rằng “trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy”.

Bài 3: Cho tam giác ABC có AB = 6cm; AC = 12cm; BC = 15cm.

a) Chứng minh rằng \(\Delta ABC\) vuông.

b) Vẽ trung tuyến AM. Từ M vẽ MH vuông góc với AC. Trên tia đối của tia MH lấy điểm K sao cho MK = MH. Chứng minh \(\Delta MHC = \Delta MKB.\)

c) Gọi G là giao điểm của BH và AM. Gọi I là trung điểm của AB. Chứng minh rằng I, G, C thẳng hàng.

Hướng dẫn giải

Bài 1: Ta có \(6 - 1,AC <6 + 1\) hay \(5

Bài 2:

Trên tia đối của tia MA lấy D sao cho MD = MA khi đó ta có \(\Delta AMC = \Delta DMB\) (c.g.c)

\( \Rightarrow AC = B{\rm{D}}\) và \(\widehat C = {\widehat B_1}\)

\( \Rightarrow B{\rm{D}}\) // AC (có cặp góc so le trong bằng nhau)

Mà \(AC \bot AB\) (gt)

\( \Rightarrow B{\rm{D}} \bot AB\) hay \(\widehat {AB{\rm{D}}} = {90^0}\).

Xét hai tam giác vuông ABD và BAC có AB chung, AC = BD (cmt).

Do đó \(\Delta AB{\rm{D}} = \Delta BAC\) (c.g.c)

\( \Rightarrow A{\rm{D}} = BC\) mà \(AM = \dfrac{1}{ 2}A{\rm{D}} \Rightarrow AM = \dfrac{1 }{2}BC.\) 

Bài 3:

a) Ta có

\(B{C^2} = A{B^2} + A{C^2}{\rm{    }}({15^2} = {9^2} + {12^2}).\)

Theo định lý Pytago đảo \(\Delta ABC\) vuông tại A.

b) Xét \(\Delta MHC\) và \(\Delta MKB\) có

+) MC = MB (gt);

+) \({\widehat M_1} = {\widehat M_2}\) (đối đỉnh);

+) MH = MK (gt).

Do dó \(\Delta MHC = \Delta MKB\) (c.g.c)