Đề kiểm tra 15 phút - Đề số 1 - Bài 6 - Chương 2 - Đại số 8
Đề bài
Bài 1. Trừ các phân thức:
a) \({{3x + 1} \over {x + y}} - {{2x - 3} \over {x + y}}\)
b) \({{xy} \over {2x - y}} - {{{x^2}} \over {y - 2x}}\)
c) \({{a + b} \over a} - {a \over {a - b}} - {{{b^2}} \over {{a^2} - ab}}.\)
Bài 2. Chứng minh rằng: \({1 \over {x + 1}} - {1 \over {x + 2}} = {1 \over {\left( {x + 1} \right)\left( {x + 2} \right)}}.\)
Hướng dẫn giải
Bài 1.
a) \({{3x + 1} \over {x + y}} - {{2x - 3} \over {x + y}} = {{\left( {3x + 1} \right) - \left( {2x - 3} \right)} \over {x + y}} \)\(\;= {{3x + 1 - 2x + 3} \over {x + y}} = {{x + 4} \over {x + y}}.\)
b) \({{xy} \over {2x - y}} - {{{x^2}} \over {y - 2x}} = {{xy} \over {2x - y}} + {{{x^2}} \over {2x - y}} = {{xy + {x^2}} \over {2x - y}}.\)
c) \(MTC = a\left( {a - b} \right).\)
Vậy
\({{a + b} \over a} - {a \over {a - b}} - {{{b^2}} \over {{a^2} - ab}} = {{\left( {a + b} \right)\left( {a - b} \right) - {a^2} - {b^2}} \over {a\left( {a - b} \right)}}\)
\( = {{{a^2} - {b^2} - {a^2} - {b^2}} \over {a\left( {a - b} \right)}} = {{ - 2{b^2}} \over {{a^2} - ab}}.\)
Bài 2. Biến đổi vế trái (VT), ta được:
\(VT = {{\left( {x + 2} \right) - \left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {x + 2} \right)}} = {{x + 2 - x - 1} \over {\left( {x + 1} \right)\left( {x + 2} \right)}}\)\(\; = {1 \over {\left( {x + 1} \right)\left( {x + 2} \right)}} = VP\) (đpcm)