Câu 40 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Đề bài
Bài 40. Tìm các nghiệm của mỗi phương trình sau trong khoảng đã cho (khi cần tính gần đúng thì tính chính xác đến \({1 \over {10}}\) giây)
a. \(2{\sin ^2}x - 3\cos x = 2,0^\circ \le x \le 360^\circ \)
b. \(\tan x + 2\cot x = 3,180^\circ \le x \le 360^\circ \)
Hướng dẫn giải
a.
\(\eqalign{
& 2{\sin ^2}x - 3\cos x = 2 \Leftrightarrow 2{\cos ^2}x + 3\cos x = 0 \cr
& \Leftrightarrow \cos x = 0\,\left( {\text{ loại }\,\cos x = - {3 \over 2}} \right) \cr
& \Leftrightarrow x = 90^\circ + k180^\circ ,\,k \in \mathbb Z \cr} \)
Vậy với điều kiện \(0^0≤ x ≤ 360^0\), phương trình có hai nghiệm là \(x = 90^0\) và \(x = 270^0\).
b. ĐKXĐ : \(\sin x ≠ 0\) và \(\cos x ≠ 0\). Ta có :
\(\tan x + 2\cot x = 3 \Leftrightarrow {\tan ^2}x - 3\tan x + 2 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr {\tan x = 2} \cr} } \right.\)
+) \( \tan x = 1 ⇔ x = 45^0 + k180^0\). Có một nghiệm thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), ứng với \(k = 1\) là \(x = 225^0\)
+) \( \tan x = 2 ⇔ x = α + k180^0\) với \(\tan α = 2\). Ta có thể chọn \(\alpha \approx {63^0}265,8\)
Vậy có một nghiệm (gần đúng) thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\) là :
\(x = \alpha + {180^0} \approx {243^0}265,8\)
Kết luận : Với điều kiện \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), phương trình có hai nghiệm \(x = 225^0\) và \(x \approx {243^0}265,8\).