Câu 4 trang 120 SGK Hình học 11 Nâng cao
Đề bài
Tam giác ABC vuông có cạnh huyền BC nằm trong mp(P), cạnh AB và AC lần lượt tạo với mp(P) các góc β và γ. Gọi α là góc tạo bởi mp(P) và mp(ABC). Chứng minh rằng \({\sin ^2}\alpha = {\sin ^2}\beta + {\sin ^2}\gamma \)
Hướng dẫn giải
Kẻ AH ⊥ mp(P) và AI ⊥ BC
Thì \(\beta = \widehat {ABH},\gamma = \widehat {ACH},\alpha = \widehat {AIH}.\)
Vì ΔABC vuông ở A nên :
\(\eqalign{ & {1 \over {A{I^2}}} = {1 \over {A{B^2}}} + {1 \over {A{C^2}}} \cr & \Rightarrow {{A{H^2}} \over {A{I^2}}} = {{A{H^2}} \over {A{B^2}}} + {{A{H^2}} \over {A{C^2}}} \cr & hay\,\,{\sin ^2}\alpha = {\sin ^2}\beta + {\sin ^2}\gamma \cr} \)