Câu 26 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Đề bài
Bài 26. Hãy chứng minh định lí 3.
Hướng dẫn giải
Ta sẽ chứng minh \({S_n} = {{n\left( {{u_1} + {u_n}} \right)} \over 2}\) (1)
+) Với mọi \(n \in \mathbb N^*\), bằng phương pháp qui nạp.
+) Với \(n = 1\), ta có \({S_1} = {u_1} = {{1\left( {{u_1} + {u_1}} \right)} \over 2}.\) Như vậy (1) đúng với \(n = 1\).
+) Giả sử (1) đúng khi \(n = k, k \in \mathbb N^*\), tức là:
\({S_k} = {{k\left( {{u_1} + {u_k}} \right)} \over 2}\)
+) Ta chứng minh (1) đúng với \(n=k+1\)
\(\eqalign{
& {S_{k + 1}} = {S_k} + {u_{k + 1}} \cr
& = {{k\left( {{u_1} + {u_k}} \right)} \over 2} + {u_{k + 1}} \cr
& = {{k\left( {{u_1} + {u_{k + 1}} - d} \right) + 2{u_{k + 1}}} \over 2} \cr
& = {{k{u_1} + \left( {k + 1} \right){u_{k + 1}} + {u_{k + 1}} - kd} \over 2} \cr
& = {{k{u_1} + \left( {k + 1} \right){u_{k + 1}} + {u_1}} \over 2} \cr
& = {{\left( {k + 1} \right)\left( {{u_1} + {u_{k + 1}}} \right)} \over 2} \cr} \)
Vậy (1) đúng với \(n = k + 1\)
Vậy (1) đúng với mọi \(n \in \mathbb N^*\).
Cách khác :
Ta có:
\(\eqalign{& \left\{ {\matrix{{{S_n} = {u_1} + {u_2} + ... + {u_{n - 1}} + {u_n}} \cr {{S_n} = {u_n} + {u_{n - 1}} + ... + {u_2} + {u_1}} \cr} } \right. \cr & \Rightarrow 2{S_n} = \left( {{u_1} + {u_n}} \right) + \left( {{u_2} + {u_{n - 1}}} \right) + ... + \left( {{u_{n - 1}} + {u_2}} \right) + \left( {{u_n} + {u_1}}\right) \cr} \)
Mà \({u_2} + {u_{n - 1}} = {u_3} + {u_{n - 2}} = ... = {u_n} + {u_1}\)
Do đó \(2{S_n} = n\left( {{u_1} + {u_n}} \right) \Rightarrow {S_n} = {n \over 2}\left( {{u_1} + {u_n}} \right)\)